
Texinfo
The GNU Documentation Format

for Texinfo version 7.1, 18 October 2023

Robert J. Chassell
Richard M. Stallman

This manual is for GNU Texinfo (version 7.1, 18 October 2023), a documentation system
that can produce both online information and a printed manual from a single source using
semantic markup.

Copyright c© 1988-2023 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

Published by the Free Software Foundation
51 Franklin St, Fifth Floor
Boston, MA 02110-1301
USA
ISBN 1-882114-67-1

i

Short Contents

Texinfo Copying Conditions . 1
1 Overview of Texinfo . 2
2 Writing a Texinfo File . 9

3 Nodes . 27
4 Chapter Structuring . 38
5 Cross-references . 44
6 Marking Text, Words and Phrases . 55
7 Quotations and Examples . 66
8 Lists and Tables . 76

9 Special Displays . 84

10 Indices . 91

11 Special Insertions . 98

12 Forcing and Preventing Breaks . 114

13 Definition Commands . 118

14 Internationalization . 131

15 Conditionally Visible Text . 134
16 Defining New Texinfo Commands . 144

17 Include Files . 155

18 Formatting and Printing with TEX . 157

19 texi2any: The Translator for Texinfo . 164
20 Creating and Installing Info Files . 196

21 Generating HTML . 205

A @-Command Details . 217
B Tips and Hints . 242

C Sample Texinfo Files . 247
D Using Texinfo Mode . 251
E Global Document Commands . 275
F Info Format Specification . 283
G GNU Free Documentation License . 289
Command and Variable Index . 297
General Index . 303

ii

Table of Contents

Texinfo Copying Conditions . 1

1 Overview of Texinfo . 2
1.1 Reporting Bugs . 2
1.2 Output Formats . 3
1.3 Info Files . 4
1.4 Printed Books . 5
1.5 Adding Output Formats . 5
1.6 History . 6

2 Writing a Texinfo File . 9
2.1 General Syntactic Conventions . 9
2.2 Comments . 10
2.3 What a Texinfo File Must Have . 10
2.4 Short Sample . 11
2.5 Texinfo File Header . 12

2.5.1 The First Line of a Texinfo File . 13
2.5.2 @setfilename: Set the Output File Name 13
2.5.3 @settitle: Set the Document Title . 14
2.5.4 Preamble . 14
2.5.5 Start and End of Header for Emacs . 15

2.6 Directory Category . 16
2.7 Document Permissions . 16

2.7.1 @copying: Declare Copying Permissions 17
2.7.2 @insertcopying: Include Permissions Text 18

2.8 Title and Copyright Pages . 18
2.8.1 @titlepage . 18
2.8.2 @title, @subtitle, and @author . 19
2.8.3 @titlefont, @center, and @sp . 20
2.8.4 Copyright Page . 21
2.8.5 Heading Generation . 22

2.9 Generating a Table of Contents . 22
2.10 The ‘Top’ Node and Master Menu . 23

2.10.1 Parts of a Master Menu . 23
2.11 The Body of the Document . 24
2.12 Ending a Texinfo File . 26

3 Nodes . 27
3.1 Writing a @node Line . 27
3.2 Choosing Node Names . 28
3.3 @node Line Requirements . 29
3.4 The First Node . 30

iii

3.5 The @top Sectioning Command . 31
3.6 Texinfo Document Structure . 31
3.7 Node and Menu Illustration . 32
3.8 Node Descriptions . 33
3.9 Menus . 34

3.9.1 Writing a Menu . 34
3.9.2 A Menu Example . 35
3.9.3 Menu Location . 36
3.9.4 The Parts of a Menu . 36
3.9.5 Less Cluttered Menu Entry . 37
3.9.6 Referring to Other Info Files . 37

4 Chapter Structuring . 38
4.1 Tree Structure of Sections . 38
4.2 Structuring Command Types . 38
4.3 @chapter: Chapter Structuring . 39
4.4 @unnumbered, @appendix: Chapters with Other Labeling 40
4.5 @majorheading, @chapheading: Chapter-level Headings 40
4.6 @section: Sections Below Chapters . 40
4.7 @unnumberedsec, @appendixsec, @heading . 41
4.8 @subsection: Subsections Below Sections . 41
4.9 The @subsection-like Commands . 41
4.10 @subsubsection and Other Subsub Commands 42
4.11 @part: Groups of Chapters . 42
4.12 Raise/lower Sections: @raisesections and @lowersections . . . 43

5 Cross-references . 44
5.1 Different Cross-reference Commands . 44
5.2 Parts of a Cross-reference . 44
5.3 @xref with One Argument . 45
5.4 @xref with Two Arguments . 46
5.5 @xref with Three Arguments . 46
5.6 @xref with Four and Five Arguments . 47
5.7 Referring to a Manual as a Whole . 48
5.8 @xref . 49
5.9 @ref . 49
5.10 @pxref . 50
5.11 @anchor: Defining Arbitrary Cross-reference Targets 50
5.12 @link: Plain, unadorned hyperlink . 51
5.13 @inforef: Cross-references to Info-only Material 51
5.14 @url, @uref{url[, text][, replacement]} . 51

5.14.1 @url Examples . 52
5.14.2 URL Line Breaking . 53
5.14.3 @url PDF Output Format . 53

5.15 @cite{reference} . 53
5.16 PDF Colors . 54

iv

6 Marking Text, Words and Phrases 55
6.1 Indicating Definitions, Commands, etc. 55

6.1.1 Highlighting Commands are Useful . 55
6.1.2 @code{sample-code} . 56
6.1.3 @kbd{keyboard-characters} . 57
6.1.4 @key{key-name} . 58
6.1.5 @samp{text} . 58
6.1.6 @verb{chartextchar} . 59
6.1.7 @var{metasyntactic-variable} . 59
6.1.8 @env{environment-variable} . 60
6.1.9 @file{file-name} . 60
6.1.10 @command{command-name} . 61
6.1.11 @option{option-name} . 61
6.1.12 @dfn{term} . 61
6.1.13 @abbr{abbreviation[, meaning]} . 61
6.1.14 @acronym{acronym[, meaning]} . 62
6.1.15 @indicateurl{uniform-resource-locator} 63
6.1.16 @email{email-address[, displayed-text]} 63

6.2 Emphasizing Text . 63
6.2.1 @emph{text} and @strong{text} . 63
6.2.2 @sc{text}: The Small Caps Font . 64
6.2.3 Fonts for Printing . 64

7 Quotations and Examples . 66
7.1 Block Enclosing Commands . 66
7.2 @quotation: Block Quotations . 67
7.3 @indentedblock: Indented text blocks . 68
7.4 @example: Example Text . 68
7.5 @verbatim: Literal Text . 69
7.6 @lisp: Marking a Lisp Example . 70
7.7 @display: Examples Using the Text Font . 70
7.8 @format: Examples Using the Full Line Width 70
7.9 @exdent: Undoing a Line’s Indentation . 71
7.10 @flushleft and @flushright . 71
7.11 @raggedright: Ragged Right Text . 72
7.12 @noindent: Omitting Indentation . 73
7.13 @indent: Forcing Indentation . 73
7.14 @cartouche: Rounded Rectangles . 74
7.15 @small... Block Commands . 75

v

8 Lists and Tables . 76
8.1 Introducing Lists . 76
8.2 @itemize: Making an Itemized List . 77
8.3 @enumerate: Making a Numbered or Lettered List 78
8.4 Making a Two-column Table . 79

8.4.1 Using the @table Command . 79
8.4.2 @ftable and @vtable . 81
8.4.3 @itemx: Second and Subsequent Items . 81

8.5 @multitable: Multi-column Tables . 81
8.5.1 Multitable Column Widths . 82
8.5.2 Multitable Rows . 82

9 Special Displays . 84
9.1 Floats . 84

9.1.1 @float [type][,label]: Floating Material . 84
9.1.2 @caption & @shortcaption . 85
9.1.3 @listoffloats: Tables of Contents for Floats 86

9.2 Inserting Images . 86
9.2.1 Image Syntax . 86
9.2.2 Image Scaling . 87

9.3 Footnotes . 88
9.3.1 Footnote Commands . 88
9.3.2 Footnote Styles . 89

10 Indices . 91
10.1 Predefined Indices . 91
10.2 Defining the Entries of an Index . 92
10.3 Advanced Indexing Commands . 93
10.4 Making Index Entries . 93
10.5 Printing Indices and Menus . 94
10.6 Combining Indices . 95

10.6.1 @syncodeindex: Combining Indices Using @code 95
10.6.2 @synindex: Combining Indices . 96

10.7 Defining New Indices . 96

11 Special Insertions . 98
11.1 Special Characters: Inserting @ {} , \ # & 98

11.1.1 Inserting ‘@’ with @@ and @atchar{} . 98
11.1.2 Inserting ‘{ ‘}’ with @{ @} and @l rbracechar{} 98
11.1.3 Inserting ‘,’ with @comma{} . 98
11.1.4 Inserting ‘\’ with @backslashchar{} . 99
11.1.5 Inserting ‘#’ with @hashchar{} . 99
11.1.6 Inserting ‘&’ with @& and @ampchar{} . 99

11.2 Inserting Quote Characters . 100
11.3 Inserting Space . 101

vi

11.3.1 Multiple Spaces . 101
11.3.2 Not Ending a Sentence . 101
11.3.3 Ending a Sentence . 102
11.3.4 @frenchspacing val: Control Sentence Spacing 102
11.3.5 @dmn{dimension}: Format a Dimension 103

11.4 Inserting Accents . 103
11.5 Inserting Quotation Marks . 104
11.6 @sub and @sup: Inserting Subscripts and Superscripts 106
11.7 @math and @displaymath: Formatting Mathematics 106
11.8 Glyphs for Text . 107

11.8.1 @TeX{} (TEX) and @LaTeX{} (LATEX) 107
11.8.2 @copyright{} (c©) . 107
11.8.3 @registeredsymbol{} (R©) . 107
11.8.4 @dots (. . .) and @enddots (. . .) . 107
11.8.5 @bullet (•) . 108
11.8.6 @euro (e): Euro Currency Symbol . 108
11.8.7 @pounds (£): Pounds Sterling . 108
11.8.8 @textdegree (°): Degrees Symbol . 108
11.8.9 @minus (−): Inserting a Minus Sign . 108
11.8.10 @geq (≥) and @leq (≤): Inserting Relations 108

11.9 Glyphs for Programming . 109
11.9.1 Glyphs Summary . 109
11.9.2 @result{} (⇒): Result of an Expression 109
11.9.3 @expansion{} (7→): Indicating an Expansion 109
11.9.4 @print{} (a): Indicating Generated Output 110
11.9.5 @error{} (error): Indicating an Error Message 110
11.9.6 @equiv{} (≡): Indicating Equivalence 111
11.9.7 @point{} (?): Indicating Point in a Buffer 111
11.9.8 Click Sequences . 112

11.10 Inserting Unicode: @U . 112

12 Forcing and Preventing Breaks 114
12.1 Break Commands . 114
12.2 @* and @/: Generate and Allow Line Breaks 114
12.3 @- and @hyphenation: Hyphenation in Printed Output 115
12.4 @allowcodebreaks: Control Line Breaks in @code 115
12.5 @w{text}: Prevent Line Breaks . 115
12.6 @tie{}: Inserting an Unbreakable Space . 116
12.7 @sp n: Insert Blank Lines . 116
12.8 @page: Start a New Page . 116
12.9 @group: Prevent Page Breaks . 116
12.10 @need mils: Prevent Page Breaks . 117

vii

13 Definition Commands . 118
13.1 The Template for a Definition . 118
13.2 Definition Command Continuation Lines . 119
13.3 Optional and Repeated Arguments . 119
13.4 Omitting the Space After a Definition Name 120
13.5 @deffnx, et al.: Two or More ‘First’ Lines . 120
13.6 The Definition Commands . 120

13.6.1 Functions and Similar Entities . 120
13.6.2 Functions in Typed Languages . 121
13.6.3 Variables and Similar Entities . 123
13.6.4 Variables in Typed Languages . 124
13.6.5 Data Types . 124
13.6.6 Object-Oriented Programming . 125

13.6.6.1 Object-Oriented Variables . 125
13.6.6.2 Object-Oriented Methods . 126

13.7 Generic Definition Commands . 127
13.8 Conventions for Writing Definitions . 128
13.9 A Sample Function Definition . 129

14 Internationalization . 131
14.1 @documentlanguage ll[_cc]: Set the Document Language 131
14.2 @documentencoding enc: Set Input Encoding 132

15 Conditionally Visible Text 134
15.1 Conditional Commands . 134
15.2 Conditional Not Commands . 135
15.3 Raw Formatter Commands . 136
15.4 Inline Conditionals: @inline, @inlineifelse, @inlineraw . . . 137
15.5 Flags: @set, @clear, conditionals, and @value 138

15.5.1 @set and @value . 138
15.5.2 @ifset and @ifclear . 139
15.5.3 @inlineifset and @inlineifclear . 140
15.5.4 @value Example . 140

15.6 Testing for Texinfo Commands: @ifcommanddefined,
@ifcommandnotdefined . 141

15.7 Conditional Nesting . 142

16 Defining New Texinfo Commands 144
16.1 Defining Macros . 144
16.2 Invoking Macros . 145
16.3 Macro Details and Caveats . 147
16.4 ‘@alias new=existing ’ . 150
16.5 Line Macros . 151
16.6 @definfoenclose: Customized Highlighting 152
16.7 External Macro Processors: Line Directives 153

viii

16.7.1 ‘#line’ Directive . 153
16.7.2 ‘#line’ and TEX . 153
16.7.3 ‘#line’ Syntax Details . 154

17 Include Files . 155
17.1 How to Use Include Files . 155
17.2 Sample File with @include . 155
17.3 @verbatiminclude file: Include a File Verbatim 156

18 Formatting and Printing with TEX 157
18.1 Use TEX . 157
18.2 Format with texi2dvi or texi2pdf . 157
18.3 Format with tex/texindex . 159

18.3.1 Formatting Partial Documents . 160
18.3.2 Details of texindex . 161

18.4 Print with lpr from Shell . 161
18.5 Preparing for TEX . 162
18.6 Overfull “hboxes” . 162

19 texi2any: The Translator for Texinfo 164
19.1 Invoking texi2any from a Shell . 164
19.2 Environment Variables Recognized by texi2any 170
19.3 texi2any Printed Output . 171
19.4 Customization Variables . 172

19.4.1 Customization Variables for @-Commands 172
19.4.2 Customization Variables and Options . 173
19.4.3 HTML Customization Variables . 174
19.4.4 MathJax Customization Variables . 181
19.4.5 latex2html Customization Variables . 181
19.4.6 tex4ht Customization Variables . 182
19.4.7 LATEX Customization Variables . 182
19.4.8 Other Customization Variables . 183

19.5 Internationalization of Document Strings . 190
19.6 Invoking pod2texi: Convert Pod to Texinfo 192

19.6.1 pod2texi . 192
19.7 texi2html: Ancestor of texi2any . 194

20 Creating and Installing Info Files 196
20.1 Installing an Info File . 196

20.1.1 The Directory File dir . 196
20.1.2 Listing a New Info File . 196
20.1.3 Info Files in Other Directories . 197
20.1.4 Installing Info Directory Files . 198
20.1.5 Invoking install-info . 199

20.2 Tag Files and Split Files . 201

ix

20.3 Info Format FAQ . 203

21 Generating HTML . 205
21.1 HTML Translation . 205
21.2 HTML Splitting . 206
21.3 HTML CSS . 206
21.4 @documentdescription: Summary Text . 207
21.5 Generating EPUB . 208

21.5.1 Container Directory and Output Files 208
21.5.2 EPUB Cross-References . 208
21.5.3 HTML Generated for EPUB . 209

21.6 Code Examples Syntax Highlighting in HTML 209
21.7 HTML Cross-references . 209

21.7.1 HTML Cross-reference Link Basics . 210
21.7.2 HTML Cross-reference Node Name Expansion 211
21.7.3 HTML Cross-reference Command Expansion 212
21.7.4 HTML Cross-reference 8-bit Character Expansion 213
21.7.5 HTML Cross-reference Mismatch . 214
21.7.6 HTML Cross-reference Configuration: htmlxref.cnf 214

Appendix A @-Command Details 217
A.1 @-Command Syntax . 217
A.2 @-Command List . 218
A.3 @-Command Contexts . 240
A.4 Obsolete @-Commands . 241

Appendix B Tips and Hints . 242

Appendix C Sample Texinfo Files 247
C.1 GNU Sample Texts . 247
C.2 Verbatim Copying License . 249
C.3 All-permissive Copying License . 249

Appendix D Using Texinfo Mode 251
D.1 Texinfo Mode Overview . 251
D.2 The Usual GNU Emacs Editing Commands 251
D.3 Inserting Frequently Used Commands . 252
D.4 Showing the Sectioning Structure of a File 254

D.4.1 Using texinfo-show-structure . 254
D.4.2 Using occur . 255

D.5 Updating Nodes and Menus . 256
D.5.1 The Updating Commands . 256
D.5.2 Updating Requirements . 258
D.5.3 Update Outer File and Include Files . 259

x

D.5.4 Include Files Requirements . 260
D.5.5 Other Updating Commands . 260

D.6 Formatting for Info . 261
D.6.1 Running texi2any/makeinfo Within Emacs 261
D.6.2 The texinfo-format... Commands . 262

D.7 Formatting and Printing with Emacs . 263
D.7.1 Formatting and Printing in Texinfo Mode 263
D.7.2 Using the Local Variables List . 265

D.8 Texinfo Mode Summary . 265
D.9 Direct Formatting of Info files . 268

D.9.1 Tagifying a File . 268
D.9.2 Splitting a File Manually . 268

D.10 Catching Mistakes . 269
D.10.1 texi2any Preferred . 269
D.10.2 Catching Errors with Info Formatting 269
D.10.3 Debugging with TEX . 270
D.10.4 Finding Badly Referenced Nodes . 272

D.10.4.1 Using Info-validate . 272
D.10.4.2 Creating an Unsplit File and Adding a Tag Table . . 273

D.11 Batch Formatting . 274

Appendix E Global Document Commands . . . 275
E.1 @setchapternewpage: Blank Pages Before Chapters 275
E.2 Page Headings . 276

E.2.1 The @headings Command . 276
E.2.2 Standard Heading Formats . 277
E.2.3 How to Make Your Own Headings . 277

E.3 @paragraphindent: Controlling Paragraph Indentation 280
E.4 @firstparagraphindent: Indenting After Headings 280
E.5 @exampleindent: Environment Indenting . 280
E.6 @smallbook: Printing “Small” Books . 281
E.7 Printing on A4 Paper . 281
E.8 @pagesizes [width][, height]: Custom Page Sizes 281
E.9 Microtypography . 282
E.10 Magnification . 282

Appendix F Info Format Specification 283
F.1 Info Format: A Whole Manual . 283
F.2 Info Format: Preamble . 284
F.3 Info Format: Indirect Table . 284
F.4 Info Format: Tag Table . 285
F.5 Info Format: Local Variables . 285
F.6 Info Format: Regular Nodes . 285
F.7 Info Format: Menu . 286
F.8 Info Format: Image . 286
F.9 Info Format: Printindex . 287

xi

F.10 Info Format: Cross-reference . 288

Appendix G GNU Free Documentation
License . 289

Command and Variable Index 297

General Index . 303

1

Texinfo Copying Conditions

GNU Texinfo is free software; this means that everyone is free to use it and free to redistribute
it on certain conditions. Texinfo is not in the public domain; it is copyrighted and there
are restrictions on its distribution, but these restrictions are designed to permit everything
that a good cooperating citizen would want to do. What is not allowed is to try to prevent
others from further sharing any version of Texinfo that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of the
programs that relate to Texinfo, that you receive source code or else can get it if you want
it, that you can change these programs or use pieces of them in new free programs, and that
you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else
of these rights. For example, if you distribute copies of the Texinfo related programs, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there
is no warranty for the programs that relate to Texinfo. If these programs are modified
by someone else and passed on, we want their recipients to know that what they have is
not what we distributed, so that any problems introduced by others will not reflect on our
reputation.

The precise conditions of the licenses for the programs currently being distributed that
relate to Texinfo are found in the General Public Licenses that accompany them. This
manual is covered by the GNU Free Documentation License (see Appendix G [GNU Free
Documentation License], page 289).

2

1 Overview of Texinfo

Texinfo is a documentation system that uses a single source file to produce both online
information and printed output. This means that instead of writing several different
documents, one for each output format, you need only write one document.

Using Texinfo, you can create a printed document (via the TEX typesetting system) in
PDF format, including chapters, sections, cross-references, and indices. From the same
Texinfo source file, you can create HTML output suitable for use with a web browser, you
can create an Info file for use in GNU Emacs or other Info-reading programs, and also create
DocBook, EPUB 3, or LATEX files.

A Texinfo source file is a plain text file containing text interspersed with @-commands
(words preceded by an ‘@’) that tell the Texinfo processors what to do. Texinfo’s markup
commands are almost entirely semantic; that is, they specify the intended meaning of text
in the document, rather than physical formatting instructions.

GNU Emacs has a special mode, called Texinfo mode, that provides various Texinfo-
related features. (See Appendix D [Texinfo Mode], page 251.)

Texinfo was devised specifically for the purpose of writing software documentation and
manuals. If you want to write a good manual for your program, Texinfo has many features
which we hope will make your job easier. However, Texinfo is not intended to be a general-
purpose formatting program. It provides almost no commands for controlling the final
formatting, so may be inappropriate for your needs if you want to lay out a newspaper,
devise a glossy magazine ad, or follow the exact formatting requirements of a publishing
house.

Spell “Texinfo” with a capital “T” and the other letters in lowercase. The first syllable
of “Texinfo” is pronounced like “speck”, not “hex”. This odd pronunciation is derived from
the pronunciation of TEX. Pronounce TEX as if the ‘X’ were the last sound in the name
‘Bach’. In the word TEX, the ‘X’ is, rather than the English letter “ex”, actually the Greek
letter “chi”.

Texinfo is the official documentation format of the GNU project. More information,
including manuals for GNU packages, is available at the GNU documentation web page
(http://www.gnu.org/doc/).

1.1 Reporting Bugs

We welcome bug reports and suggestions for any aspect of the Texinfo system: programs,
documentation, installation, etc. Please email them to bug-texinfo@gnu.org. You can get
the latest version of Texinfo via its home page, http://www.gnu.org/software/texinfo.

For bug reports, please include enough information for the maintainers to reproduce the
problem. Generally speaking, that means:

• The version number of Texinfo and the program(s) or manual(s) involved.

• The contents of any input files necessary to reproduce the bug.

• Precisely how you ran any program(s) involved.

• A description of the problem and samples of any erroneous output.

• Hardware and operating system names and versions.

http://www.gnu.org/doc/
http://www.gnu.org/doc/
mailto:bug-texinfo@gnu.org
http://www.gnu.org/software/texinfo

Chapter 1: Overview of Texinfo 3

• Anything else that you think would be helpful.

When in doubt whether something is needed or not, include it. It’s better to include too
much than to leave out something important.

It is critical to send an actual input file that reproduces the problem.

Any problems with the Info reader in Emacs should be reported to the Emacs developers:
see Section “Bugs” in The GNU Emacs Manual.

Patches are welcome; if possible, please make them with ‘diff -c’, ‘diff -u’ (see Com-
paring and Merging Files), or ‘git diff’ and include ChangeLog entries (see Section “Change
Log” in GNU Coding Standards), and follow the existing coding style.

1.2 Output Formats

Here is an overview of the output formats currently supported by Texinfo.

Info (Generated via texi2any.) Info format is mostly a plain text transliteration
of the Texinfo source. It adds a few control characters to provide navigational
information for cross-references, indices, and so on. The Emacs Info subsystem
(see Info), and the standalone info program (see GNU Info), among others, can
read these files. See Section 1.3 [Info Files], page 4, and Chapter 20 [Creating
and Installing Info Files], page 196.

Plain text (Generated via texi2any --plaintext.) This is almost the same as Info output
with the navigational control characters are omitted.

HTML (Generated via texi2any --html.) HTML, standing for Hyper Text Markup
Language, is the language for writing documents on the World Wide Web. Web
browsers can render this language online. There are many versions of HTML,
both different standards and browser-specific variations. texi2any uses a subset
of the language that can be interpreted by any common browser, intentionally
not using many newer or less widely-supported tags. Although the native output
is thus rather plain, it can be customized at various levels, if desired. See
Chapter 21 [Generating HTML], page 205.

EPUB 3 (Generated via texi2any --epub3.) EPUB is a format designed for reading
electronic books on portable devices. It is a derivative of HTML. The format
was developed by the International Digital Publishing Forum (IDPF), which is
now part of the World Wide Web Consortium (W3C). The latest major revision,
EPUB 3, dates from 2011.

DVI (Generated via texi2dvi.) The DeVIce Independent binary format is output by
the TEX typesetting program (http://tug.org). This is then read by a DVI
‘driver’, which knows the actual device-specific commands that can be viewed
or printed, notably Dvips for translation to PostScript (see Dvips) and Xdvi
for viewing on an X display (http://sourceforge.net/projects/xdvi/). See
Chapter 18 [Hardcopy with TEX], page 157. (Be aware that the Texinfo language
is very different from TEX’s usual languages: plain TEX, LATEX, ConTEXt, etc.)

PostScript (Generated via texi2dvi --ps.) PostScript is a page description language
that became widely used around 1985 and is still used today. https://en.

http://tug.org
http://sourceforge.net/projects/xdvi/
https://en.wikipedia.org/wiki/PostScript

Chapter 1: Overview of Texinfo 4

wikipedia.org/wiki/PostScript gives a basic description and more prefer-
ences. By default, Texinfo uses the dvips program to convert TEX’s DVI output
to PostScript. See Dvips.

PDF (Generated via texi2dvi --pdf or texi2pdf.) This format was developed by
Adobe Systems for portable document interchange, based on their previous
PostScript language. It can represent the exact appearance of a document, in-
cluding fonts and graphics, and supporting arbitrary scaling. It is intended to be
platform-independent and easily viewable, among other design goals; https://
en.wikipedia.org/wiki/Portable_Document_Format and http://tug.org/

TUGboat/tb22-3/tb72beebe-pdf.pdf have some background. By default, Tex-
info uses the pdftex program, an extension of TEX, to output PDF; see http://
tug.org/applications/pdftex. See [PDF Output], page 157.

LATEX (Generated via texi2any --latex.) This is a typesetting system built on top
of TEX. It was originally released by Leslie Lamport in 1984. LATEX adds
more definitions to those of TEX and has a wide range of packages built on
it. LATEX is ubiquitous in academic literature. The current version of LATEX
is under active development; more information is available online at https://
www.latex-project.org/.

The LATEX output can be further processed into DVI, PostScript, or PDF. In
theory, the LATEX output should allow for much more customizability of the
output than would be possible with the plain TEX implementation of Texinfo.

DocBook (Generated via texi2any --docbook.) This is an XML-based format, primarily
for technical documentation. It therefore bears some resemblance, in broad
outline, to Texinfo. See http://www.docbook.org. Various converters from
DocBook to Texinfo have also been developed; see the Texinfo web pages.

XML (Generated via texi2any --xml.) The texi2any XML output, unlike all the
other output formats, is a transliteration of the Texinfo source, rather than
finished output. Texinfo XML files cannot be viewed in web browsers or other
programs.

XML is a generic syntax specification usable for any sort of content. (A reference
is at http://www.w3.org/XML.) The purpose of the Texinfo XML output is to
allow further processing by XML tools. The output syntax is defined in an XML
DTD, which is contained in a file texinfo.dtd included in the Texinfo source
distribution.

The Texinfo source distribution includes a utility script txixml2texi to do a
backward transformation to recreate the original Texinfo content (except for
Texinfo macros and conditionals).

1.3 Info Files

As mentioned above, Info format is mostly a plain text transliteration of the Texinfo source,
with the addition of a few control characters to separate nodes and provide navigational
information, so that Info-reading programs can operate on it.

https://en.wikipedia.org/wiki/PostScript
https://en.wikipedia.org/wiki/PostScript
https://en.wikipedia.org/wiki/Portable_Document_Format
https://en.wikipedia.org/wiki/Portable_Document_Format
http://tug.org/TUGboat/tb22-3/tb72beebe-pdf.pdf
http://tug.org/TUGboat/tb22-3/tb72beebe-pdf.pdf
http://tug.org/applications/pdftex
http://tug.org/applications/pdftex
https://www.latex-project.org/
https://www.latex-project.org/
http://www.docbook.org
http://www.w3.org/XML

Chapter 1: Overview of Texinfo 5

Info files are nearly always created by processing a Texinfo source document. texi2any,
also known as makeinfo, is the principal command that converts a Texinfo file into an Info
file; see Chapter 19 [Generic Translator texi2any], page 164.

Generally, you enter an Info file through a node that by convention is named ‘Top’.
This node normally contains just a brief summary of the file’s purpose, and a large menu
through which the rest of the file is reached. From this node, you can either traverse the file
systematically by going from node to node, or you can go to a specific node listed in the
main menu, or you can search the index menus and then go directly to the node that has
the information you want. Alternatively, with the standalone Info program, you can specify
specific menu items on the command line (see Info).

If you want to read through an Info file in sequence, as if it were a printed manual, you
can hit SPC repeatedly, or you get the whole file with the advanced Info command g *. (See
Section “Advanced Info commands” in Info.)

The dir file in the info directory serves as the departure point for the whole Info system.
From it, you can reach the ‘Top’ nodes of each of the documents in a complete Info system.

If you wish to refer to an Info file via a URI, you can use the (unofficial) syntax exemplified
by the following. This works with Emacs/W3, for example:

info:emacs#Dissociated%20Press

info:///usr/info/emacs#Dissociated%20Press

info://localhost/usr/info/emacs#Dissociated%20Press

The info program itself does not follow URIs of any kind.

1.4 Printed Books

A Texinfo file can be formatted and typeset as a printed book or manual. To do this,
you need TEX, a sophisticated typesetting program written by Donald Knuth of Stanford
University. It is not part of the Texinfo distribution.

Texinfo provides a file texinfo.tex that contains the definitions that TEX uses when
it typesets a Texinfo file. You can get the latest version of texinfo.tex from the Texinfo
home page, http://www.gnu.org/software/texinfo/.

A Texinfo-based book is similar to any other typeset, printed work: it can have a title
page, copyright page, table of contents, and preface, as well as chapters, numbered or
unnumbered sections and subsections, page headers, cross-references, footnotes, and indices.

TEX is very powerful and has a great many features. However, because a Texinfo file
must be able to present information both on a character-only terminal in Info form and in a
typeset book, the formatting commands that Texinfo supports are necessarily limited.

See Chapter 18 [Hardcopy with TEX], page 157, for more information on processing a
manual with TEX.

1.5 Adding Output Formats

The output formats in the previous sections handle a wide variety of usage, but of course
there is always room for more.

If you are a programmer and would like to contribute to the GNU project by implementing
additional output formats for Texinfo, that would be excellent. The way to do this that

http://www.gnu.org/software/texinfo/

Chapter 1: Overview of Texinfo 6

would be most useful is to write a new back-end for texi2any, our reference implementation
of a Texinfo parser; it creates a tree representation of the Texinfo input that you can use for
the conversion. The documentation in the source file tp/Texinfo/Convert/Converter.pm
is a good place to start (see Section “Texinfo::Convert::Converter” in Texinfo modules
documentation). See Chapter 19 [Generic Translator texi2any], page 164.

Another viable approach is use the Texinfo XML output from texi2any as your input.
This XML is an essentially complete representation of the input, but without the Texinfo
syntax and option peculiarities, as described above.

If you still cannot resist the temptation of writing a new program that reads Texinfo
source directly, let us give some more caveats: please do not underestimate the amount of
work required. Texinfo is by no means a simple language to parse correctly, and remains
under development, so you would be committing to an ongoing task. You are advised to
check that the tests of the language that come with texi2any give correct results with your
new program.

From time to time, proposals are made to generate traditional Unix man pages from
Texinfo source. However, because man pages have a strict conventional format, creating
a good man page requires a completely different source from that needed for the typical
Texinfo applications of writing a good user tutorial and/or a good reference manual. This
makes generating man pages incompatible with the Texinfo design goal of not having to
document the same information in different ways for different output formats. You might as
well write the man page directly.

As an alternative way to support man pages, you may find the program help2man to be
useful. It generates a traditional man page from the ‘--help’ output of a program. In fact,
the man pages for the programs in the Texinfo distribution are generated with this. It is
GNU software written by Brendan O’Dea, available from http://www.gnu.org/software/

help2man.

1.6 History

Richard M. Stallman invented the Texinfo format, wrote the initial processors, and created
Edition 1.0 of this manual. Robert J. Chassell greatly revised and extended the manual,
starting with Edition 1.1. Brian Fox was responsible for the standalone Texinfo distribution
until version 3.8. Karl Berry continued maintenance from Texinfo 3.8 (manual edition 2.22),
and Gavin Smith has continued maintenance since Texinfo 6.0.

Beginnings

Richard Stallman included an on-line, hypertext help system called Info in the original
implementation of Emacs (in 1975/6). Stallman had been inspired after seeing a presentation
a couple of years earlier on the “NLS” hypertext system of Douglas Engelbart.

In another development, in the 1970’s at CMU, Brian Reid developed a program and
format named Scribe to mark up documents for printing. It used the @ character to introduce
commands, as Texinfo does. Much more consequentially, it strove to describe document
contents rather than formatting, an idea wholeheartedly adopted by Texinfo.

Meanwhile, people at MIT developed another format called Bolio. Richard Stallman
(RMS) worked on converting Bolio to use TEX as its typesetting language, resulting in
BoTEX. The earliest BoTEX version seems to have been 0.02 on October 31, 1984.

http://www.gnu.org/software/help2man
http://www.gnu.org/software/help2man

Chapter 1: Overview of Texinfo 7

BoTEX could only be used as a markup language for documents to be printed, not for
online documents. RMS combined BoTEX and Info to create Texinfo, a mark-up language
for text that is intended to be read both online and as printed hard copy.

The original translator to create Info was written (primarily by RMS and Bob Chassell)
in Emacs Lisp, namely the texinfo-format-buffer and other functions. In the early 1990s,
Brian Fox reimplemented the conversion program in C, now called makeinfo, as well as the
standalone info program.

Reimplementing in Perl

In 2012, the C makeinfo was itself replaced by a Perl implementation generically called
texi2any. This version supports the same level of output customization as texi2html,
an independent program originally written by Lionel Cons, later with substantial work
by many others. The many additional features needed to make texi2html a replacement
for makeinfo were implemented by Patrice Dumas. The first, never-released version of
texi2any was based on the texi2html code.

That implementation, however, was abandoned in favor of the current program (also
written by Patrice Dumas), which parses the Texinfo input into a tree for processing. It
inherited the design of customization and other features from texi2html (for more on
texi2html compatibility, see Section 19.7 [texi2html], page 194). However, texi2any is a
full reimplementation: it constructs a tree-based representation of the input document for
all back-ends to work from.

The new Perl program is much slower than the old C program. The speed gap has
partially closed since first release, but it may not ever be entirely comparable. So why did
we switch? In short, we intend and hope that the present program will be much easier than
the previous C implementation of makeinfo to extend to different output styles, back-end
output formats, and all other customizations. In more detail:

• HTML customization. Many GNU and other free software packages had been happily
using the HTML customization features in texi2html for years. Thus, in effect two
independent implementations of the Texinfo language had developed, and keeping them
in sync was not simple. Adding the HTML customization possible in texi2html to a C
program would have been an enormous effort.

• Unicode, and multilingual support generally, especially of east Asian languages. At
that time, doing it in C would have been tantamount to rewriting the entire program.
Since then, the parser and bits of converter back-ends have been rewritten in C, but
the converter back-ends are still mostly in Perl which has good multilingual support
built in.

• Additional back-ends. The makeinfo code had become convoluted to the point where
adding a new back-end was quite complex, requiring complex interactions with existing
back-ends. In contrast, the new implementation provides a clean tree-based representa-
tion for all back-ends to work from. People have requested numerous different back-ends
(LATEX, the latest (X)HTML, . . .); this change made them much more feasible to
implement. Which leads to the last item:

• Making contributions easier. In general, due to the cleaner structure, the separate
parser/back-ends implementation should be considerably easier than the former C
makeinfo implementation for anyone to read and contribute to, with the resulting

Chapter 1: Overview of Texinfo 8

obvious benefits. After ten years, contributed back-ends were yet to happen, but it is
still believed that this structure could in theory lend better to contributions.

texi2any is intended to be a reference implementation that defines parts of the language
not fully specified by the manual. Without such a reference, alternative implementations
would be very likely to have subtle, or not-so-subtle, differences in behavior, and thus Texinfo
documents would become dependent on the processor. It is also important to have consistent
command-line options for all processors. Extensive tests of the language and processor
were developed at the same time as texi2any; we encourage anyone thinking of writing a
program to parse Texinfo input to make use of these tests.

With the release of texi2any as the reference implementation, development of both the
C implementation of makeinfo and texi2html has been halted. Going forward, we ask
authors of Texinfo documents to use only texi2any.

9

2 Writing a Texinfo File

This chapter describes Texinfo syntax and what is required in a Texinfo file, and gives a
short sample file.

2.1 General Syntactic Conventions

This section describes the general conventions used in all Texinfo documents.

• All printable ASCII characters except ‘@’, ‘{’ and ‘}’ can appear in a Texinfo file and
stand for themselves. ‘@’ is the escape character which introduces commands, while
‘{’ and ‘}’ are used to surround arguments to certain commands. To put one of these
special characters into the document, put an ‘@’ character in front of it, like this: ‘@@’,
‘@{’, and ‘@}’.

• In a Texinfo file, the commands you write to describe the contents of the manual are
preceded by an ‘@’ character; they are called @-commands. (The ‘@’ in Texinfo has the
same meaning that ‘\’ has in plain TEX.)

Depending on what they do or what arguments they take, you need to write @-commands
on lines of their own, or as part of sentences. As a general rule, a command requires
braces if it mingles among other text; but it does not need braces if it is on a line of its
own. For more details of Texinfo command syntax, see Section A.1 [Command Syntax],
page 217.

• Whitespace following an @-command name is optional and (usually) ignored if present.
The exceptions are contexts when whitespace is significant, e.g., an @example environ-
ment.

• Texinfo supports the usual quotation marks used in English and in other languages; see
Section 11.5 [Inserting Quotation Marks], page 104.

• Use three hyphens in a row, ‘---’, to produce a long dash—like this (called an em dash),
used for punctuation in sentences. Use two hyphens, ‘--’, to produce a medium dash
(called an en dash), used primarily for numeric ranges, as in “June 25–26”. Use a single
hyphen, ‘-’, to produce a standard hyphen used in compound words. For display on the
screen, Info reduces three hyphens to two and two hyphens to one (not transitively!).
Of course, any number of hyphens in the source remain as they are in literal contexts,
such as @code and @example.

• Whitespace. Texinfo files are plain text files composed of lines terminated by the
usual newline character (line feed). Texinfo processors read input one line at a time.
Paragraphs are terminated by an empty line or a line containing only spaces. A sequence
of several spaces in text is usually treated the same as a single space (except in verbatim
modes).

Form feed (CTRL-l) characters in normal text end any open paragraph. Other ASCII
whitespace (tab, carriage return) may be treated the same as space characters, although
the results may differ depending on output format. Hence, there is not much point in
using these in documents. Non-ASCII spaces, such as Unicode “em space”, are not
recognized as whitespace at all and will be treated as regular, non-whitespace characters.

However, in verbatim modes, for example in code samples, tab characters may produce
the correct formatting in the output.

Chapter 2: Writing a Texinfo File 10

2.2 Comments

You can write comments in a Texinfo file by using the @comment command, which may be
abbreviated to @c. Such comments are for a person looking at the Texinfo source file. All
the text on a line that follows either @comment or @c is a comment; the rest of the line does
not appear in the visible output. (To be precise, the character after the @c or @comment
must be something other than a dash or alphanumeric, or it will be taken as part of the
command.)

Often, you can write the @comment or @c in the middle of a line, and only the text that
follows after the @comment or @c command does not appear; but some commands, such as
@settitle, work on a whole line. You cannot use @comment or @c within a line beginning
with such a command.

In cases of nested command invocations, complicated macro definitions, etc., @c and
@comment may provoke an error when processing with TEX. Therefore, you can also use the
DEL character (ASCII 127 decimal, 0x7f hex, 0177 octal) as a true TEX comment character
(catcode 14, in TEX internals). Everything on the line after the DEL will be ignored and the
next line will be merged.

You can also have long stretches of text ignored by the Texinfo processors with the
@ignore and @end ignore commands. Write each of these commands on a line of its own,
starting each command at the beginning of the line. Text between these two commands
does not appear in the processed output. You can use @ignore and @end ignore for
writing comments. (For some caveats regarding nesting of such commands, see Section 15.7
[Conditional Nesting], page 142.)

2.3 What a Texinfo File Must Have

By convention, the name of a Texinfo file ends with one of the extensions .texi, .texinfo,
.txi, or .tex. Using .tex is discouraged as this extension is already used by TEX and
LATEX input files. The most common and recommended extension is .texi. The name of a
Texinfo file should only contain ASCII characters.

The output name is based on the input file name, in the default case. First, any of the
extensions .texi, .tex, .txi, or .texinfo is removed from the input file name; then, the
output format specific extension is added—.html when generating HTML, .info when
generating Info, etc. The output name should only contain ASCII characters1.

In order to be made into a printed manual, a Texinfo file must begin with a line like this:

\input texinfo

The contents of the file follow this beginning, and then you must end the Texinfo source
with a line like this:

@bye

The @bye line at the end of the file on a line of its own tells TEX that the file is ended
and to stop formatting. If you leave this out, you’ll be dumped at TEX’s prompt at the end
of the run.

1 texi2any can handle non ASCII characters in input file names, but non ASCII characters in output
name will create problems for some output formats, especially for cross-references.

Chapter 2: Writing a Texinfo File 11

Furthermore, you will usually provide a Texinfo file with a title, a title page, indices, and
the like, all of which are explained in this manual. But the minimum, which can be useful
for short documents, is just the one line at the beginning and the one line at the end.

Without additional information, the input and output encodings are assumed to be
UTF-8, an universal codeset compatible with 7-bit ASCII.

2.4 Short Sample

Here is a short sample Texinfo file.

\input texinfo

@settitle Sample Manual 1.0

@copying

This is a short example of a complete Texinfo file.

Copyright @copyright{} 2016 Free Software Foundation, Inc.

@end copying

@titlepage

@title Sample Title

@page

@vskip 0pt plus 1filll

@insertcopying

@end titlepage

@contents

@node Top

@top GNU Sample

This manual is for GNU Sample

(version @value{VERSION}, @value{UPDATED}).

@menu

* First Chapter:: The first chapter is the

only chapter in this sample.

* Index:: Complete index.

@end menu

@node First Chapter

@chapter First Chapter

@cindex chapter, first

This is the first chapter.

@cindex index entry, another

Chapter 2: Writing a Texinfo File 12

Here is a numbered list.

@enumerate

@item

This is the first item.

@item

This is the second item.

@end enumerate

@node First Section

@section First Section

First section of first chapter.

@node Second Section

@section Second Section

Second section of first chapter.

@node Index

@unnumbered Index

@printindex cp

@bye

2.5 Texinfo File Header

Texinfo files start with the line:

\input texinfo

The ‘\input texinfo’ line tells TEX to use the texinfo.tex file, which tells TEX how
to translate the Texinfo @-commands into TEX typesetting commands. (Note the use of the
backslash, ‘\’; this is correct for TEX.)

It makes sense to include any command that affects document formatting as a whole in
the header. The @settitle line is usually present at the beginning of the header:

@settitle Sample Manual 1.0

The @settitle line specifies a title for the page headers (or footers) of the printed manual,
and the default title and document description for the ‘<head>’ in HTML. @synindex (see
Section 10.6.2 [@synindex], page 96), for instance, is another command often included in
the header.

The start of the Texinfo file up to the first content that is output as part of the main body
of the document is the preamble. It includes the header, Section 2.7 [Document Permissions],

Chapter 2: Writing a Texinfo File 13

page 16, and Section 2.8 [Titlepage & Copyright Page], page 18, specification. It is important
for the LATEX output format as the end of preamble is where the \begin{document} line
is output. In other output formats it may be used to determine how some special output
is formatted, for example Section 2.7.1 [@copying], page 17, output as a comment at the
beginning of output files, or the language used in file headers.

2.5.1 The First Line of a Texinfo File

Every Texinfo file that is to be the top-level input to TEX must begin with a line that looks
like this:

\input texinfo

When the file is processed by TEX, the ‘\input texinfo’ command tells TEX to load the
macros needed for processing a Texinfo file. These are in a file called texinfo.tex, which
should have been installed on your system along with either the TEX or Texinfo software.
TEX uses the backslash, ‘\’, to mark the beginning of a command, exactly as Texinfo uses
‘@’. The texinfo.tex file causes the switch from ‘\’ to ‘@’; before the switch occurs, TEX
requires ‘\’, which is why it appears at the beginning of the file.

You may optionally follow this line with a comment to tell GNU Emacs to use Texinfo
mode when the file is edited:

\input texinfo @c -*-texinfo-*-

This may be useful when Emacs doesn’t detect the file type from the file extension automat-
ically.

2.5.2 @setfilename: Set the Output File Name

The @setfilename line specifies the name of the output file to be generated by texi2any.
This command is ignored for TEX formatting. When present, it should be the first Texinfo
command (that is, after ‘\input texinfo’). Write the @setfilename command at the
beginning of a line and follow it on the same line by the Info file name.

@setfilename info-file-name

The name must be different from the name of the Texinfo file. There are two conventions
for choosing the name: you can either remove the extension (such as ‘.texi’) entirely from
the input file name, or (recommended) replace it with the ‘.info’ extension. It is not advised
to base the @setfilename name on a entirely different name than the input file name.

When a @setfilename line is present, the Texinfo processors ignore everything written
before the @setfilename line. This is why the very first line of the file (the \input line)
does not show up in the output.

If there is no @setfilename line, texi2any uses the input file name to determine the
output name (see Section 2.3 [Minimum], page 10). The \input line is still ignored in this
processing, as well as leading blank lines.

When producing another output format, texi2any will replace any final extension with
the output format-specific extension (‘html’ when generating HTML, for example), or add a
dot followed by the extension (‘.html’ for HTML) if the given name has no extension.

@-commands are not allowed in @setfilename, except for @@, @{, @} and associated
@-commands such as @atchar{}.

Chapter 2: Writing a Texinfo File 14

@setfilename used to be required by the Texinfo processors and some other programs.
This should not be the case any more; @setfilename can be omitted. If the Texinfo input is
processed from standard input, without an input file name to deduce the base file name from,
@setfilename could still be relevant. This is not the only way, however: --output option
specifies the output file name on the texi2any command-line (see Section 19.1 [Invoking
texi2any], page 164).

Although an explicit ‘.info’ extension is preferable, some operating systems cannot
handle long file names. You can run into a problem even when the file name you specify
is itself short enough. This occurs because the Info formatters split a long Info file into
short indirect subfiles, and name them by appending ‘-1’, ‘-2’, . . . , ‘-10’, ‘-11’, and so
on, to the original file name. (See Section 20.2 [Tag and Split Files], page 201.) The
subfile name texinfo.info-10, for example, is too long for old systems with a 14-character
limit on filenames; so the Info file name for this document could be texinfo rather than
texinfo.info on such a system. @setfilename is a way to specify an alternative name.

2.5.3 @settitle: Set the Document Title

A Texinfo file should contain a line that looks like this:

@settitle title

Write the @settitle command at the beginning of a line and follow it on the same
line by the title. Do not write anything else on the line. The @settitle command should
precede everything that generates actual output. The best place for it is right after the
@setfilename command, if present (described in the previous section).

This command gives the title to use in a header or footer for double-sided printed output,
in case such headings are output. For more on headings for printed output, see Section 2.8.5
[Heading Generation], page 22.

In HTML, title serves as the document ‘<title>’ and it becomes the default document
description in the ‘<head>’ part.

When the title page is used in the output, as is generally the case for printed output,
the title in the @settitle command does not affect the title as it appears on the title page.
Thus, the two do not need not to match exactly. A practice we recommend is to include
the version or edition number of the manual in the @settitle title; on the title page, the
version number generally appears as a @subtitle so it would be omitted from the @title.
See Section 2.8.1 [@titlepage], page 18.

2.5.4 Preamble

The preamble starts at the beginning of the Texinfo file and continues until the first
directly output material. It typically includes the file header (see Section 2.5 [Texinfo
File Header], page 12), the @copying block specifying the document permissions (see Sec-
tion 2.7.1 [@copying], page 17) and the @titlepage specification (see Section 2.8 [Titlepage
& Copyright Page], page 18).

The preamble may contain commands that affect document formatting as a whole
but which do not produce output, or do not produce output straight away, such as
@settitle (see Section 2.5.3 [@settitle], page 14), @documentlanguage, (see Section 14.1
[@documentlanguage], page 131), commands setting the headings, controlling indentation
or hyphenation, or the table of contents (see Section 2.9 [Contents], page 22).

Chapter 2: Writing a Texinfo File 15

Any text that starts a paragraph, @-commands that are formatted as quotations, tables,
lists and so on, and @node (see Chapter 3 [Nodes], page 27) and chapter structuring commands
(see Chapter 4 [Chapter Structuring], page 38) end the preamble.

The concept of the preamble is significant for LATEX output, as the \begin{document}
line is output at the end of the preamble.

In plaintext, the preamble is simply output as usual at the beginning of the document;
for example, a @contents in the preamble is output as the table of contents (see Section 2.9
[Contents], page 22).

There is not much special treatment of the preamble for HTML and Info output either.
However, some settings current at the very end of the preamble may be used for the
document as a whole, regardless of what follows. This may apply to commands specifying
the indentation, or the language (see Section 14.1 [@documentlanguage], page 131).

For example, for the following document, the HTML and Info copying comments are
formatted with @documentlanguage set to ‘pt’, as it is the last @documentlanguage before
the end of the preamble.

\input texinfo

@documentlanguage fr

@copying

The copying information @error{} some text

@end copying

@documentlanguage pt

Text ending the preamble

@documentlanguage de

@node Top

2.5.5 Start and End of Header for Emacs

In Emacs, start- and end-of-header lines can be used to enclose commands that globally
affect the document in the Texinfo preambule. This allows you to format only part of a
Texinfo file for Info or printing. See Section D.6.2 [texinfo-format commands], page 262.

A start-of-header line is a Texinfo comment that looks like this:

@c %**start of header

Write the start-of-header line on the second line of a Texinfo file. Follow the start-
of-header commands that globally affect the document formatting, such as @settitle,
@synindex or @footnotestyle; and then by an end-of-header line.

A end-of-header line is a Texinfo comment that looks like this:

@c %**end of header

The odd string of characters, ‘%**’, is to ensure that no other comment is accidentally
taken for a start-of-header line. You can change it if you wish by setting the tex-start-

Chapter 2: Writing a Texinfo File 16

of-header and/or tex-end-of-header Emacs variables. See Section D.7.1 [Texinfo Mode
Printing], page 263.

The start- and end-of-header lines are not part of the Texinfo format specification, which
is why they are implemented with comments.

2.6 Directory Category

Use the @dircategory command to specify a category for the manual. Here are a few
examples of category names:

Basics
Text creation and manipulation
Archiving
Compression
Database
Editors
Emacs
Email
Graphics
Localization
Network applications
Printing
Science
Software development
Software libraries
Version control

@dircategory commands are usually followed by a @direntry blocks, which are used
by install-info. See Section 20.1.4 [Installing Dir Entries], page 198, for details.

The first @dircategory command in a manual is the category for the entire manual.
Subsequent uses of @dircategory set the category for following @direntry blocks only.

2.7 Document Permissions

This segment describes the document and contains the copyright notice and copying permis-
sions. This is done with the @copying command. A real manual includes more text here,
according to the license under which it is distributed.

@copying

This is a short example of a complete Texinfo file, version 1.0.

Copyright @copyright{} 2016 Free Software Foundation, Inc.

@end copying

The copyright notice and copying permissions for a document need to appear in several
places in the various Texinfo output formats. Therefore, Texinfo provides a command
(@copying) to declare this text once, and another command (@insertcopying) to insert
the text at appropriate points.

If the document is a software manual, the software is typically under a different license—
for GNU and many other free software packages, software is usually released under the GNU

Chapter 2: Writing a Texinfo File 17

GPL, and manuals are released under the GNU FDL. It is helpful to state the license of the
software of the manual, but giving the complete text of the software license is not necessarily
required.

2.7.1 @copying: Declare Copying Permissions

The @copying command should be given very early in the document; the recommended
location is right after the header material (see Section 2.5 [Texinfo File Header], page 12).
It conventionally consists of a sentence or two about what the program is, identification of
the documentation itself, the legal copyright line, and the copying permissions. Here is a
skeletal example:

@copying

This manual is for program (version version, updated

date), which ...

Copyright @copyright{} years copyright-owner.

@quotation

Permission is granted to ...

@end quotation

@end copying

The @quotation has no legal significance; it’s there to improve readability in some
contexts.

The text of @copying appears as a comment at the beginning of Info and HTML output
files. This information is also output at the beginning of the DocBook output files using
appropriate markup. It is not output implicitly in plain text or printed output; it’s up
to you to use @insertcopying to emit the copying information. See the next section for
details.

The @copyright{} command generates a ‘c’ inside a circle when the output format
supports this glyph (print and HTML always do, for instance). When the glyph is not
supported in the output, it generates the three-character sequence ‘(C)’.

The copyright notice itself has the following legally-prescribed form:

Copyright c© years copyright-owner.

The word ‘Copyright’ must always be written in English, even if the document is otherwise
written in another language. This is due to international law.

The list of years should include all years in which a version was completed (even if it was
released in a subsequent year). It is simplest for each year to be written out individually
and in full, separated by commas.

The copyright owner (or owners) is whoever holds legal copyright on the work. In the
case of works assigned to the FSF, the owner is ‘Free Software Foundation, Inc.’.

The copyright ‘line’ may actually be split across multiple lines, both in the source
document and in the output. This often happens for documents with a long history, having
many different years of publication. If you do use several lines, do not indent any of them
(or anything else in the @copying block) in the source file.

See Section “Copyright Notices” in GNU Maintainer Information, for additional informa-
tion. See Section C.1 [GNU Sample Texts], page 247, for the full text to be used in GNU

Chapter 2: Writing a Texinfo File 18

manuals. See Appendix G [GNU Free Documentation License], page 289, for the license
itself under which GNU and other free manuals are distributed.

2.7.2 @insertcopying: Include Permissions Text

The @insertcopying command is simply written on a line by itself, like this:

@insertcopying

This inserts the text previously defined by @copying. To meet legal requirements, it
must be used on the copyright page in the printed manual (see Section 2.8.4 [Copyright],
page 21).

The @copying command itself causes the permissions text to appear in an Info file before
the first node. The text is also copied into the beginning of each split Info output file, as is
legally necessary. This location implies a human reading the manual using Info does not
see this text (except when using the advanced Info command g *). This does not matter
for legal purposes, because the text is present. But to get a visible text in the output,
@insertcopying should be used.

Similarly, the @copying text is automatically included at the beginning of each HTML
output file, as an HTML comment. Again, this text is not visible without @insertcopying
(unless the reader views the HTML source).

The permissions text defined by @copying also appears automatically at the beginning
of the DocBook output files using appropriate markup. @insertcopying can be used to
output the permission text within normal text.

2.8 Title and Copyright Pages

In hard copy output, the manual’s name and author are usually printed on a title page.
Copyright information is usually printed on the back (verso) of the title page. This segment
must be enclosed between @titlepage and @end titlepage commands:

@titlepage

@title Sample Title

@c The following two commands start the copyright page.

@page

@vskip 0pt plus 1filll

@insertcopying

@end titlepage

We use the @insertcopying command to include the permission text from the previous
section, instead of writing it out again.

The title and copyright pages appear in printed manuals, but not in most other output
formats. In HTML, the best way to get a title page similar to printed manuals is to set the
NO_TOP_NODE_OUTPUT customization variable (see [NO_TOP_NODE_OUTPUT], page 186).

2.8.1 @titlepage

Start the material for the title page and following copyright page with @titlepage on a line
by itself and end it with @end titlepage on a line by itself.

Chapter 2: Writing a Texinfo File 19

The @end titlepage command starts a new page and turns on page numbering (see
Section 2.8.5 [Heading Generation], page 22). All the material that you want to appear on
unnumbered pages should be put between the @titlepage and @end titlepage commands.

By using the @page command, you can force a page break within the region delineated
by the @titlepage and @end titlepage commands and thereby create more than one
unnumbered page. This is how the copyright page is produced. (The @titlepage command
might perhaps have been better named the @titleandadditionalpages command, but
that would have been rather long!)

When you write a manual about a computer program, you should write the version of
the program to which the manual applies on the title page. If the manual changes more
frequently than the program or is independent of it, you should also include an edition
number2 for the manual. This helps readers keep track of which manual is for which version
of the program. (The ‘Top’ node should also contain this information; see Section 2.10 [The
Top Node], page 23.)

One method uses the @title, @subtitle, and @author commands to create a title page.
With this method, you do not specify any of the actual formatting of the title page. You
specify the text you want, and Texinfo does the formatting. The usual formatting consist of
black rules under the title and author lines and the subtitle text set flush to the right-hand
side of the page.

Texinfo also provides a second method for creating a title page. using typesetting
commands that are not to be used in the main text. This method uses uses the @titlefont,
@sp, and @center commands to generate a title page in which the words on the page are
centered.

For sufficiently simple documents, and for the bastard title page in traditional book
frontmatter, Texinfo also provides a command @shorttitlepage which takes the rest of the
line as the title. The argument is typeset on a page by itself and followed by a blank page.
In HTML, @shorttitlepage can play the same role as @settitle, if @settitle is not set.
See Section 2.5.3 [@settitle], page 14.

2.8.2 @title, @subtitle, and @author

You can use the @title, @subtitle, and @author commands to create a title page in which
the vertical and horizontal spacing is done for you automatically.

Write the @title, @subtitle, or @author commands at the beginning of a line followed
by the title, subtitle, or author. The @author command may be used for a quotation in an
@quotation block (see Section 7.2 [@quotation], page 67); except for that, it is an error to
use any of these commands outside of @titlepage.

The @title command normally produces a line in which the title is set flush to the
left-hand side of the page in a larger than normal font. The title is underlined with a black
rule. The title must be given on a single line in the source file; it will be broken into multiple
lines of output is needed.

For long titles, the @* command may be used to specify the line breaks in long titles
if the automatic breaks do not suit. Such explicit line breaks are generally reflected in all

2 We have found that it is helpful to refer to versions of independent manuals as ‘editions’ and versions of
programs as ‘versions’; otherwise, we find we are liable to confuse each other in conversation by referring
to both the documentation and the software with the same words.

Chapter 2: Writing a Texinfo File 20

output formats; if you only want to specify them for the printed output, use a conditional
(see Chapter 15 [Conditionals], page 134). For example:

@title This Long Title@inlinefmt{tex,@*} Is Broken in @TeX{}

The @subtitle command normally sets subtitles in a normal-sized font flush to the
right-hand side of the page.

The @author command normally sets the names of the author or authors in a middle-sized
font flush to the left-hand side of the page on a line near the bottom of the title page. The
names are followed by a black rule that is thinner than the rule that normally underlines
the title.

There are two ways to use the @author command: you can write the name or names on
the remaining part of the line that starts with an @author command:

@author by Jane Smith and John Doe

or you can write the names one above each other by using multiple @author commands:

@author Jane Smith

@author John Doe

A template for this method looks like this:

@titlepage

@title name-of-manual-when-printed
@subtitle subtitle-if-any
@subtitle second-subtitle
@author author
@page

...

@end titlepage

2.8.3 @titlefont, @center, and @sp

You can also use the @titlefont, @sp, and @center commands to create a title page for a
printed document.

Use the @titlefont command to select a large font suitable for the title itself. You can
use @titlefont more than once if you have an especially long title.

For HTML output, each @titlefont command produces an <h1> heading, but the HTML
document <title> is not affected. For that, you could put a @settitle command before
the @titlefont command (see Section 2.5.3 [@settitle], page 14).

For example:

@titlefont{Texinfo}

Use the @center command at the beginning of a line to center the remaining text on
that line. Thus,

@center @titlefont{Texinfo}

centers the title, which in this example is “Texinfo” printed in the title font.

Use the @sp command to insert vertical space. For example:

@sp 2

This inserts two blank lines on the printed page. (See Section 12.7 [@sp], page 116, for more
information about the @sp command.)

Chapter 2: Writing a Texinfo File 21

A template for this method looks like this:

@titlepage

@sp 10

@center @titlefont{name-of-manual-when-printed}
@sp 2

@center subtitle-if-any
@sp 2

@center author
...

@end titlepage

The spacing of the example fits an 8.5 by 11 inch manual.

2.8.4 Copyright Page

By international treaty, the copyright notice for a book must be either on the title page or
on the back of the title page. When the copyright notice is on the back of the title page, that
page is customarily not numbered. Therefore, in Texinfo, the information on the copyright
page should be within @titlepage and @end titlepage commands.

Use the @page command to cause a page break. To push the copyright notice and
the other text on the copyright page towards the bottom of the page, use the following
incantation after @page:

@vskip 0pt plus 1filll

The @vskip command inserts whitespace in the TEX output; it is ignored in all other output
formats. The ‘0pt plus 1filll’ means to put in zero points of mandatory whitespace, and
as much optional whitespace as needed to push the following text to the bottom of the page.
Note the use of three ‘l’s in the word ‘filll’; this is correct.

To insert the copyright text itself, write @insertcopying next (see Section 2.7 [Document
Permissions], page 16):

@insertcopying

Follow the copying text by the publisher, ISBN numbers, cover art credits, and other
such information.

Here is an example putting all this together:

@titlepage

...

@page

@vskip 0pt plus 1filll

@insertcopying

Published by ...

Cover art by ...

@end titlepage

We have one more special case to consider: for plain text output, you must insert the
copyright information explicitly if you want it to appear. For instance, you could have the
following after the copyright page:

@ifplaintext

Chapter 2: Writing a Texinfo File 22

@insertcopying

@end ifplaintext

You could include other title-like information for the plain text output in the same place.

2.8.5 Heading Generation

Texinfo has two standard page heading formats, one for documents printed on one side of
each sheet of paper (single-sided printing), and the other for documents printed on both
sides of each sheet (double-sided printing).

In full generality, you can control the headings in different ways:

• The conventional way is to write a @setchapternewpage command before the title page
commands.

Most documents are formatted with the standard single-sided or double-sided headings,
(sometimes) using @setchapternewpage odd for double-sided printing and (almost
always) no @setchapternewpage command for single-sided printing (see Section E.1
[@setchapternewpage], page 275).

• Alternatively, you can use the @headings command to prevent page headings from
being generated or to start them for either single or double-sided printing. To turn off
headings, write @headings off. See Section E.2.1 [@headings], page 276.

• Or, you may specify your own page heading and footing format. See Section E.2
[Headings], page 276.

2.9 Generating a Table of Contents

The @chapter, @section, and other structuring commands (see Chapter 4 [Chapter Struc-
turing], page 38) supply the information to make up a table of contents, but they do not
cause an actual table to appear in the manual. To do this, you must use the @contents

and/or @summarycontents command(s).

@contents

Generates a table of contents in a printed manual, including all chapters, sections,
subsections, etc., as well as appendices and unnumbered chapters. Headings
generated by @majorheading, @chapheading, and the other @...heading com-
mands do not appear in the table of contents (see Section 4.2 [Structuring
Command Types], page 38).

@shortcontents

@summarycontents

(@summarycontents is a synonym for @shortcontents.)

Generates a short or summary table of contents that lists only the chapters,
appendices, and unnumbered chapters. Sections, subsections and subsubsections
are omitted. Only a long manual needs a short table of contents in addition to
the full table of contents.

Both contents commands should be written on a line by themselves, and placed near the
beginning of the file, after the @end titlepage (see Section 2.8.1 [@titlepage], page 18),
before any sectioning command. The contents commands automatically generate a chapter-
like heading at the top of the first table of contents page, so don’t include any sectioning
command such as @unnumbered before them.

Chapter 2: Writing a Texinfo File 23

Since an Info file uses menus instead of tables of contents, the Info formatting commands
ignore the contents commands. But the contents are included in plain text output and in
other output formats, such as HTML.

In HTML output, the links in the short table of contents point to corresponding entries
in the full table of contents rather than the text of the document. The links in the full table
of contents point to the main text of the document.

@shortcontents is not implemented for LATEX output.

2.10 The ‘Top’ Node and Master Menu

The ‘Top’ node is the node in which a reader enters an Info manual. As such, it should
contain a very brief description of the manual (including the version number). The contents
of the ‘Top’ node do not appear in printed output nor in DocBook output.

It is conventional to write a @top sectioning command line containing the title of the
document immediately after the @node Top line (see Section 3.5 [@top Command], page 31).

We repeat the short description from the beginning of the ‘@copying’ text, but there’s
no need to repeat the copyright information, so we don’t use ‘@insertcopying’ here.

The ‘Top’ node contains a top-level menu listing the chapters, and possibly a detailed
menu listing all the nodes in the entire document.

@node Top

@top Short Sample

This is a short sample Texinfo file.

@menu

* First Chapter:: The first chapter is the

only chapter in this sample.

* Index:: Complete index.

@end menu

2.10.1 Parts of a Master Menu

A master menu is the main menu. It is customary to include a detailed menu listing all the
nodes in the document in this menu. Like any other menu, a master menu is enclosed in
@menu and @end menu and does not appear in the printed output nor in DocBook output.

The master menu contains entries for the major nodes in the Texinfo file: the nodes for
the chapters, chapter-like sections, and the appendices, followed by nodes for the indices.

You may choose to follow these entries with a detailed menu. This lists other, lower-level
nodes, often ordered by chapter. These items may be a convenience for an inquirer who can
go directly to a particular node when searching for specific information, rather than going
through an intermediate menu. If you use a detailed menu in your master menu, mark it
with the @detailmenu ... @end detailmenu environment.

Each section in the menu can be introduced by a descriptive line. So long as the line
does not begin with an asterisk, it will not be treated as a menu entry. (See Section 3.9.1
[Writing a Menu], page 34, for more information.)

Chapter 2: Writing a Texinfo File 24

For example, the master menu for this manual looks like the following (but has many
more entries):

@menu

* Copying Conditions:: Your rights.

* Overview:: Texinfo in brief.

...

* Command and Variable Index::

* General Index::

@detailmenu

--- The Detailed Node Listing ---

Overview of Texinfo

* Reporting Bugs:: ...

...

Beginning a Texinfo File

* Sample Beginning:: ...

...

@end detailmenu

@end menu

2.11 The Body of the Document

The body segment contains all the text of the document. A manual is divided into one or
more nodes (see Chapter 3 [Nodes], page 27). The example illustrates a chapter made of
three nodes, one for introductory material in the chapter, and two sections. The introductory
material contains an enumerated list.

Chapter 2: Writing a Texinfo File 25

@node First Chapter

@chapter First Chapter

@cindex chapter, first

This is the first chapter.

@cindex index entry, another

Here is a numbered list.

@enumerate

@item

This is the first item.

@item

This is the second item.

@end enumerate

@node First Section

@section First Section

First section of first chapter.

@node Second Section

@section Second Section

Second section of first chapter.

In the Info output, the ‘First Chapter’ node will contain a menu listing the two sections
in the chapter. Similarly, when this node is output in its own HTML file, it will contain a
table of contents for the chapter.

Here is what the contents of this chapter will look like:

1. First Chapter

This is the first chapter.

Here is a numbered list.

1. This is the first item.

2. This is the second item.

1.1 First Section

First section of first chapter.

Chapter 2: Writing a Texinfo File 26

1.2 Second Section

Second section of first chapter.

(In the Info and HTML output, the chapter would also be split into nodes.)

2.12 Ending a Texinfo File

The end of a Texinfo file should include commands to create indices (see Section 10.5
[Printing Indices & Menus], page 94), and the @bye command to mark the last line to be
processed. For example:

@node Index

@unnumbered Index

@printindex cp

@bye

A @bye command terminates Texinfo processing. It should be on a line by itself. Anything
following @bye is completely ignored.

27

3 Nodes

A node is a region of text that begins at a @node command, and continues until the next
@node command. To specify a node, write a @node command at the beginning of a line, and
follow it with the name of the node. Info readers display one node at a time, and provide
commands for the user to move to related nodes. The HTML output can be similarly
navigated.

Nodes are used as the targets of cross-references. Cross-references, such as the one
at the end of this sentence, are made with @xref and related commands; see Chapter 5
[Cross References], page 44. Cross-references can be sprinkled throughout the text. Other
@-commands may also be the target of cross-references (see Section 5.11 [@anchor], page 50,
see Section 9.1 [Floats], page 84).

Normally, you put a node command immediately before each chapter structuring
command—for example, an @section or @subsection line. (See Chapter 4 [Chapter
Structuring], page 38.) You should do this even if you do not intend to format the file for
Info. This is because printed output uses both @node names and chapter-structuring names
in the output for cross-references. The only time you are likely to use the chapter structuring
commands without also using nodes is if you are writing a document that contains no cross
references and will only be printed, not transformed into Info, HTML, or other formats.

3.1 Writing a @node Line

Write @node at the beginning of a line followed by the name of the node, like this:

@node node-name

After you have inserted a @node line, you should immediately write the @-command for
the associated chapter or section (if any) and insert its name.

You may optionally follow the node name argument to @node with up to three optional
arguments on the rest of the same line, separating the arguments with commas. These are
the names of the ‘Next’, ‘Previous’, and ‘Up’ pointers, in that order. Hence, the template
for a fully-written-out node line with ‘Next’, ‘Previous’, and ‘Up’ pointers looks like this:

@node node-name, next, previous, up

The node-name argument must be present, but the others are optional. If you wish to spec-
ify some but not others, just insert commas as needed, as in: ‘@node mynode,,,uppernode’.
Any spaces before or after each name on the @node line are ignored. However, if your Texinfo
document is hierarchically organized, as virtually all are, we recommend leaving off all the
pointers and letting texi2any determine them.

The texi2any program automatically determines node pointers for a hierarchically
organized document. For it to do this, each @node command should be followed immediately
by a sectioning command such as @chapter or @section (except that comment lines may
intervene). Finally, you must follow the ‘Top’ @node line with a line beginning with @top to
mark the top-level node in the file. See Section 3.5 [@top Command], page 31.

Even when you explicitly specify all pointers, you cannot write the nodes in the Texinfo
source file in an arbitrary order. You must write the nodes in the order you wish them to
appear in the output. For Info format one can imagine that the order may not matter, but
it matters for the other formats.

Chapter 3: Nodes 28

In most cases, you will want to take advantage of the pointer creation feature, and not
redundantly specify node pointers that the programs can determine. However, Texinfo
documents are not required to be organized hierarchically or in fact to contain sectioning
commands at all (for example, if you never intend the document to be printed), so node
pointers may still be specified explicitly, in full generality.

If you are using GNU Emacs, and want explicit pointers, you can use the update node
commands provided by Texinfo mode to insert the names of the pointers. (See Section D.5
[Updating Nodes and Menus], page 256.)

Alternatively, you can insert the ‘Next’, ‘Previous’, and ‘Up’ pointers yourself. If you
do this in Emacs, you may find it helpful to use the Texinfo mode keyboard command C-c

C-c n. This command inserts ‘@node’ and a comment line listing the names of the pointers
in their proper order. The comment line helps you keep track of which arguments are for
which pointers.

3.2 Choosing Node Names

The name of a node identifies the node. For all the details of node names, see Section 3.3
[Node Line Requirements], page 29).

Here are some suggestions for node names:

• Try to pick node names that are informative but short.

In the Info file, the file name, node name, and pointer names are all inserted on one
line, which may run into the right edge of the window. (This does not cause a problem
with Info, but is ugly.)

• Try to pick node names that differ from each other near the beginnings of their names.
This way, it is easy to use automatic name completion in Info.

• Conventionally, node names are capitalized in the same way as section and chapter
titles. In this manual, initial and significant words are capitalized; others are not. In
other manuals, just initial words and proper nouns are capitalized. Either way is fine;
we recommend just being consistent.

• In HTML output, any characters in the node name other than plain ASCII letters,
numbers or spaces will be changed in the file name. (See Section 21.7.2 [HTML Xref
Node Name Expansion], page 211.) This can make the URLs for the pages in your
manual less user-friendly; for example, in this manual the ‘@dots’ node is output as
__0040dots.html.

Because node names are used in cross-references, it is not desirable to casually change
them once published. When you delete or rename a node, it is usually a good idea to define
an @anchor with the old name. That way, references from other manuals, from mail archives,
and so on are not invalidated. See Section 5.11 [@anchor], page 50.

The pointers from a given node enable you to reach other nodes and consist simply of
the names of those nodes.

Normally, a node’s ‘Up’ pointer contains the name of the node whose menu mentions
that node. The node’s ‘Next’ pointer contains the name of the node that follows the present
node in that menu and its ‘Previous’ pointer contains the name of the node that precedes it
in that menu. When a node’s ‘Previous’ node is the same as its ‘Up’ node, both pointers
name the same node.

Chapter 3: Nodes 29

Usually, the first node of a Texinfo file is the ‘Top’ node, and its ‘Up’ pointer points to
the dir file, which contains the main menu for all of Info.

3.3 @node Line Requirements

Names used with @node have several requirements:

• All the node names in a single Texinfo file must be unique.

This means, for example, that if you end every chapter with a summary, you must name
each summary node differently. You cannot just call them all “Summary”. You may,
however, duplicate the titles of chapters, sections, and the like. Thus you can end each
chapter with a section called “Summary”, so long as the node names for those sections
are all different.

Node names, anchor names (see Section 5.11 [@anchor], page 50), and float labels (see
Section 9.1.1 [@float], page 84) must all be unique.

• Node names can contain @-commands1. For example, using @TeX{} in a node name
results in the TEX logo being output, as it would be in normal text. Cross-references
should use @TeX{} just as the node name does.

Some commands do not make sense in node names; for instance, environments (e.g.,
@quotation), commands that read a whole line as their argument (e.g., @sp), and plenty
of others. For the complete list of commands that are allowed, and their expansion for
HTML identifiers and file names, see Section 21.7.3 [HTML Xref Command Expansion],
page 212.

• A node name may not start with a left parenthesis preceding a right parenthesis, as in
(not)allowed, since this syntax is used to specify an external manual.

• Unfortunately, you cannot reliably use periods, commas, or colons within a node name;
these can confuse some Info readers. texi2any quotes problematic node names and
labels by default, but some Info readers do not recognize this syntax. Node name and
label quoting causes DEL characters (‘CTRL-?’, character number 127, often rendered as
‘^?’) to appear around the name. To remove node names and labels quoting, you can
set the customization variable INFO_SPECIAL_CHARS_QUOTE to ‘0’ (see Section 19.4.8
[Other Customization Variables], page 183).

texi2any warns about such problematic usage in node names, menu items, and cross-
references. If you don’t want to see the warnings, you can set the customization
variable INFO_SPECIAL_CHARS_WARNING to ‘0’ (see Section 19.4.8 [Other Customization
Variables], page 183).

If you insist on using these characters in node names, in order not to confuse the Texinfo
processors you must still escape those characters, by using either special insertions
(see Section 11.1.3 [Inserting a Comma], page 98) or @asis (see [@asis], page 80). For
example:

@node foo@asis{::}bar@comma{} baz

As an example of avoiding the special characters, the following is a section title in this
manual:

@section @code{@@unnumbered}, @code{@@appendix}: Chapters with...

1 Prior to the Texinfo 5 release in 2013, this feature was supported in an ad hoc way (the --commands-

in-node-names option to makeinfo). Now it is part of the language.

Chapter 3: Nodes 30

But the corresponding node name lacks the commas and the subtitle:

@node @code{@@unnumbered @@appendix}

• Case is significant in node names.

• Spaces before and after names on the ‘@node’ line are ignored. Multiple whitespace
characters “inside” a name are collapsed to a single space. For example:

@node foo bar

@node foo bar,

@node foo bar ,

@node foo bar,

@node foo bar ,

all define the same node, namely ‘foo bar’. In menu entries, a single internal space
should be used in node names or some versions of some Info readers will not find the
node.

3.4 The First Node

The first node of a Texinfo file is the Top node, except in an included file (see Chapter 17
[Include Files], page 155). The Top node should contain a short summary and a master
menu. See Section 2.10 [The Top Node], page 23, for more information on the Top node
contents and examples. Straight text before the Top node outside of any node should be
avoided. Such text, if present, is not output for DocBook.

Here is a description of the node pointers to be used in the Top node:

• The Top node (which must be named ‘top’ or ‘Top’) should have as its ‘Up’ node the
name of a node in another file, where there is a menu that leads to this file. Specify the
file name in parentheses.

Usually, all Info files are available through a single virtual Info tree, constructed from
multiple directories. In this case, use ‘(dir)’ as the parent of the Top node; this specifies
the top-level node in the dir file, which contains the main menu for the Info system as
a whole. (Each directory with Info files is intended to contain a file named dir.)

That’s fine for Info, but for HTML output, one might well want the Up link from the
Top node to go to some specific place. For example, for GNU the natural place would
be http://www.gnu.org/manual/ (a web page collecting links to most GNU manuals),
better specified as just /manual/ if the manual will be installed on www.gnu.org. This
can be specified with the TOP_NODE_UP_URL customization variable (see Section 19.4.3
[HTML Customization Variables], page 174), as in

$ texi2any --html -c TOP_NODE_UP_URL=/manual/ ...

• The ‘Prev’ node of the Top node is usually omitted.

• The ‘Next’ node of the Top node should be the first chapter in your document.

See Section 20.1 [Installing an Info File], page 196, for more information about installing
an Info file in the info directory.

It is usually best to leave the pointers off entirely and let the tools implicitly define them,
with this simple result:

@node Top

http://www.gnu.org/manual/

Chapter 3: Nodes 31

3.5 The @top Sectioning Command

The @top command is a special sectioning command that you should only use after a ‘@node
Top’ line at the beginning of a Texinfo file.

It produces the same sort of output as @unnumbered (see Section 4.4 [@unnumbered
@appendix], page 40). In LATEX \part* is used.

@top is ignored when raising or lowering sections. That is, it is never lowered and nothing
can be raised to it (see Section 4.12 [Raise/lower sections], page 43).

It used to be conventional to wrap the ‘Top’ node in an @ifnottex conditional so that it
would not appear in printed output (see Chapter 15 [Conditionals], page 134). Thus, a Top
node often looked like this:

@ifnottex

@node Top

@top your-manual-title

very-high-level-summary
@end ifnottex

This is no longer necessary, as the ‘Top’ node is now never output for printed output.
The ‘Top’ node is not output for DocBook either.

3.6 Texinfo Document Structure

Nodes can contain menus, which contain the names of child nodes within the parent node;
for example, a node corresponding to a chapter would have a menu of the sections in that
chapter. The menus allow the user to move to the child nodes in the Info output.

In addition, nodes contain node pointers that name other nodes. The ‘Next’ and ‘Previous’
pointers link nodes at the same sectioning level into a chain. As you might imagine, the
‘Next’ pointer links to the next node, and the ‘Previous’ pointer links to the previous node.
In general, ‘Next’ and ‘Previous’ refer to nodes at the same hierarchical level in the manual,
not necessarily to the next node within the Texinfo file. In the Texinfo file, the subsequent
node may be at a lower level—a section-level node most often follows a chapter-level node,
for example. Thus, for example, all the nodes that are at the level of sections within a
chapter are linked together, and the order in this chain is the same as the order of the
children in the menu of the parent chapter. Each child node records the parent node name
as its ‘Up’ pointer.

Since the ‘Top’ node is the only node at that level, ‘Next’ refers to the first following
node, which is almost always a chapter or chapter-level node. This is an exception to the
rule of ‘Next’ being at the same hierarchical level.

The Info and HTML output for each node includes links to the ‘Next’, ‘Previous’, and
‘Up’ nodes. The HTML also uses the accesskey attribute with the values ‘n’, ‘p’, and ‘u’
respectively. This allows people using web browsers to follow the navigation using (typically)
M-letter, e.g., M-n for the ‘Next’ node, from anywhere within the node. Node pointers and
menus provide structure for Info files just as chapters, sections, subsections, and the like
provide structure for printed books. The two structures are theoretically distinct; in practice,
however, the tree structure of printed books is essentially always used for the node and
menu structure also, as this leads to a document which is easy to follow.

Chapter 3: Nodes 32

Typically, the sectioning structure and the node structure are completely parallel, with
one node for each chapter, section, etc., and with the nodes following the same hierarchical
arrangement as the sectioning. Thus, if a node is at the logical level of a chapter, its child
nodes are at the level of sections; similarly, the child nodes of sections are at the level of
subsections.

It is technically possible to create Texinfo documents with only one structure or the other,
or for the two structures not to be parallel, or for either the sectioning or node structure to
be different from the conventional structure. To the best of our knowledge, however, all the
Texinfo manuals currently in general use do follow the conventional parallel structure.

3.7 Node and Menu Illustration

Here is a diagram that illustrates a Texinfo file with three chapters, each of which contains
two sections.

The “root” is at the top of the diagram and the “leaves” are at the bottom. This is how
such a diagram is drawn conventionally; it illustrates an upside-down tree. For this reason,
the root node is called the ‘Top’ node, and ‘Up’ node pointers carry you closer to the root.

Top

|

| | |

Chapter 1 Chapter 2 Chapter 3

| | |

-------- -------- --------

| | | | | |

Section Section Section Section Section Section

1.1 1.2 2.1 2.2 3.1 3.2

Using explicit pointers (not recommended, but shown for purposes of the example), the
fully-written command to start Chapter 2 would be this:

@node Chapter 2, Chapter 3, Chapter 1, Top

@comment node-name, next, previous, up

This @node line says that the name of this node is “Chapter 2”, the name of the ‘Next’ node
is “Chapter 3”, the name of the ‘Previous’ node is “Chapter 1”, and the name of the ‘Up’
node is “Top”. You can (and should) omit writing out these node names if your document
is hierarchically organized, but the pointer relationships still obtain.

To go to Sections 2.1 and 2.2 using Info, you need a menu inside Chapter 2. (See
Section 3.9 [Menus], page 34.) You would write the menu just before the beginning of Section
2.1, like this:

@menu

* Sect. 2.1:: Description of this section.

* Sect. 2.2:: Description.

@end menu

The automatic pointers for the node for Sect. 2.1 correspond to:

@node Sect. 2.1, Sect. 2.2, , Chapter 2

@comment node-name, next, previous, up

Chapter 3: Nodes 33

Note that no ‘Prev’ pointer is generated, since there is no other node at the same
hierarchical level before Sect. 2.1.

Using explicit pointers, the node for Sect. 2.1 could be written like this:

@node Sect. 2.1, Sect. 2.2, Chapter 2, Chapter 2

@comment node-name, next, previous, up

With automatic pointers, the ‘Next’ and ‘Previous’ pointers of a node lead to other nodes
at the same level—from chapter to chapter or from section to section. As shown, when
using explicit pointers, the pointers can also lead somewhere else, here, for example, the
‘Previous’ pointer points up. An ‘Up’ pointer usually leads to a node at the level above
(closer to the ‘Top’ node; and a ‘Menu’ leads to nodes at a level below (closer to ‘leaves’). (A
cross-reference can point to a node at any level; see Chapter 5 [Cross References], page 44.)

Technically, explicit node pointers can carry you to any node, regardless of the structure
of the document; even to nodes in a different Info file. However, it would be very confusing
for readers to have the ‘Next’, ‘Previous’ and ‘Up’ pointers lead to nodes that do not
correspond, even loosely, to the next, previous and up node.

A @node command and a chapter structuring command are conventionally used together,
in that order, often followed by indexing commands. (As shown in the example above,
you may follow the @node line with a comment line, e.g., to show which pointer is which
if explicit pointers are used.) The Texinfo processors use this construct to determine the
relationships between nodes and sectioning commands.

Here is the beginning of the chapter in this manual called “Ending a Texinfo File”. This
shows a @node line followed by a @chapter line, and then by indexing lines.

@node Ending a File

@chapter Ending a Texinfo File

@cindex Ending a Texinfo file

@cindex Texinfo file ending

@cindex File ending

3.8 Node Descriptions

You can provide a short description of the purpose of a node by using the @nodedescription
command following the @node line. Such a description might elaborate on or extend the
information in the node name itself.

You can also use a @nodedescriptionblock environment to provide a node description.
This may be useful for longer descriptions.

texi2any uses the content you provide with these commands when outputing menus
for Info output format (and, optionally, for HTML). texi2any uses the description after a
menu entry for the node if it is generating the menu automatically, or if no description for
the menu entry was provided in an explicit @menu block. (See Section 3.9 [Menus], page 34).

Here is an example of using these commands:

@node Tools

@chapter Tools

This chapter is on different tools you can use.

Chapter 3: Nodes 34

@node Screwdrivers

@nodedescription Flathead and Phillips.

@section Screwdrivers

This section is about screwdrivers.

@node Drills

@nodedescriptionblock

Making holes in things with power screwdrivers, drill drivers, combi

drills, impact drivers, hammer drills, breakers and demolition drills.

@end nodedescriptionblock

@section Drills

This section is about drills.

In Info output, texi2any would output the ‘Tools’ node with a menu as follows:

* Menu:

* Screwdrivers:: Flathead and Phillips.

* Drills:: Making holes in things with power

screwdrivers, drill drivers, combi

drills, impact drivers, hammer drills,

breakers and demolition drills.

3.9 Menus

Menus contain pointers to subordinate nodes. In Info output, you use menus to go to such
nodes. texi2any can output menus in HTML output, but does not do so by default (see
Section 19.4.8 [Other Customization Variables], page 183, under FORMAT_MENU). Menus have
no role in printed manuals or other output formats.

Menus are automatically generated by texi2any when outputting Info for nodes followed
by a sectioning command, without an explicit @menu block, and with automatic pointers.

It is often more convenient to let texi2any generate menus for you, as you do not then
have the burden of updating menu blocks in your Texinfo source when you add, remove,
or relocate nodes. In the usual case of a hierarchically organized manual with sectioning
commands associated with nodes, and with node pointers left out, you should only write
menus if you want exact control over the contents and formatting of menus in Info.

3.9.1 Writing a Menu

A menu consists of a @menu command on a line by itself, followed by menu entry lines or
menu comment lines, and then followed by an @end menu command on a line by itself.

A menu looks like this:

Chapter 3: Nodes 35

@menu

Larger Units of Text

* Files:: All about handling files.

* Multiples: Buffers. Multiple buffers; editing

several files at once.

@end menu

In a menu, every line that begins with an ‘* ’ is a menu entry. (Note the space after the
asterisk.)

A line that does not start with an ‘* ’ may also appear in a menu. Such a line is not a
menu entry but rather a menu comment line that appears in the Info file. In the example
above, the line ‘Larger Units of Text’ is such a menu comment line; the two lines starting
with ‘* ’ are menu entries.

Technically, menus can carry you to any node, regardless of the structure of the document;
even to nodes in a different Info file. However, the texi2any implicit pointer creation feature
(see Section 3.1 [Writing a Node], page 27) and GNU Emacs Texinfo mode updating
commands work only to create menus of subordinate nodes in a hierarchically structured
document. In a hierarchically structured document, it is much better to use cross-references
to refer to arbitrary nodes.

In Info, a user selects a node with the m (Info-menu) command. The menu entry name
is what the user types after the m command. In the HTML output, the accesskey attribute
is used with the values ‘1’. . . ‘9’ for the first nine entries. This allows people using web
browsers to follow the first menu entries using (typically) M-digit, e.g., M-1 for the first entry.

3.9.2 A Menu Example

A menu looks like this in Texinfo:

@menu

* menu entry name: Node name. A short description.

* Node name:: This form is preferred.

@end menu

This produces:

* Menu:

* menu entry name: Node name. A short description.

* Node name:: This form is preferred.

Here is an example as you might see it in a Texinfo file:

@menu

Larger Units of Text

* Files:: All about handling files.

* Multiples: Buffers. Multiple buffers; editing

several files at once.

@end menu

Chapter 3: Nodes 36

This produces:

* Menu:

Larger Units of Text

* Files:: All about handling files.

* Multiples: Buffers. Multiple buffers; editing

several files at once.

In this example, the menu has two entries. ‘Files’ is both a menu entry name and the
name of the node referred to by that name. ‘Multiples’ is the menu entry name; it refers
to the node named ‘Buffers’. The line ‘Larger Units of Text’ is a comment; it appears in
the menu, but is not an entry.

Since no file name is specified with either ‘Files’ or ‘Buffers’, they must be the names
of nodes in the same Info file (see Section 3.9.6 [Referring to Other Info Files], page 37).

3.9.3 Menu Location

There may be at most one menu in a node. A menu is conventionally located at the end of
a node, without any regular text or additional commands between the @end menu and the
beginning of the next node.

This convention is useful, since a reader who uses the menu could easily miss any such
text. Also, any such post-menu text will be considered part of the menu in Info output
(which has no marker for the end of a menu). Thus, a line beginning with ‘* ’ will likely be
incorrectly handled.

It’s usually best if a node with a menu does not contain much text. If you find yourself
with a lot of text before a menu, we generally recommend moving all but a couple of
paragraphs into a new subnode. Otherwise, it is easy for readers to miss the menu.

3.9.4 The Parts of a Menu

A menu entry has three parts, only the second of which is required:

1. The menu entry name (optional).

2. The name of the node (required).

3. A description of the item (optional).

The template for a generic menu entry looks like this (but see the next section for one
more possibility):

* menu-entry-name: node-name. description

Follow the menu entry name with a single colon, and follow the node name with tab,
comma, newline, or the two characters period and space (‘. ’).

The third part of a menu entry is a descriptive phrase or sentence. Menu entry names and
node names are often short; the description explains to the reader what the node is about.
A useful description complements the node name rather than repeats it. The description,
which is optional, can spread over multiple lines; if it does, some authors prefer to indent
the second line while others prefer to align it with the first (and all others). It’s up to you.
An empty line, or the next menu entry, ends a description.

Space characters in a menu are preserved as-is in the Info output; this allows you to
format the menu as you wish. Unfortunately you must type node names without any extra

Chapter 3: Nodes 37

spaces or some versions of some Info readers will not find the node (see Section 3.3 [Node
Line Requirements], page 29).

texi2any warns and protect names when the text of a menu item (and node names and
cross-references) contains a problematic construct that could interfere with its parsing in
Info. See [Info Node Names Constraints], page 29.

3.9.5 Less Cluttered Menu Entry

When the menu entry name and node name are the same, you can write the name immediately
after the asterisk and space at the beginning of the line and follow the name with two colons.

For example, write

* Name:: description

instead of

* Name: Name. description

We recommend using the node name for the menu entry name whenever possible, since
it reduces visual clutter in the menu.

3.9.6 Referring to Other Info Files

You can create a menu entry that enables a reader in Info to go to a node in another Info
file by writing the file name in parentheses just before the node name. Some examples:

@menu

* first-entry-name:(filename)nodename. description

* (filename)second-node:: description

@end menu

For example, to refer directly to the ‘Outlining’ and ‘Rebinding’ nodes in the Emacs
Manual, you could write a menu like this:

@menu

* Outlining: (emacs)Outline Mode. The major mode for

editing outlines.

* (emacs)Rebinding:: How to redefine the

meaning of a key.

@end menu

If you do not list the node name, but only name the file, then Info presumes that you are
referring to the ‘Top’ node. Examples:

* Info: (info). Documentation browsing system.

* (emacs):: The extensible, self-documenting

text editor.

The GNU Emacs Texinfo mode menu updating commands only work with nodes within
the current buffer, so you cannot use them to create menus that refer to other files. You
must write such menus by hand. See Section D.5 [Updating Nodes and Menus], page 256.

38

4 Chapter Structuring

Texinfo’s chapter structuring commands divide a document into a hierarchy of chapters,
sections, subsections, and subsubsections. These commands generate large headings in the
text, like the one above. They also provide information for generating the table of contents
(see Section 2.9 [Generating a Table of Contents], page 22).

Normally you put a @node command immediately before each chapter structuring com-
mand. See Chapter 3 [Nodes], page 27.

4.1 Tree Structure of Sections

A Texinfo file is usually structured like a book with chapters, sections, subsections, and
the like. This structure can be visualized as a tree (or rather as an upside-down tree)
with the root at the top and the levels corresponding to chapters, sections, subsection, and
subsubsections.

Here is a diagram that shows a Texinfo file with three chapters, each with two sections.

Top

|

| | |

Chapter 1 Chapter 2 Chapter 3

| | |

-------- -------- --------

| | | | | |

Section Section Section Section Section Section

1.1 1.2 2.1 2.2 3.1 3.2

In a Texinfo file that has this structure, the beginning of Chapter 2 would be written like
this:

@node Chapter 2

@chapter Chapter 2

For purposes of example, here is how it would be written with explicit node pointers:

@node Chapter 2, Chapter 3, Chapter 1, Top

@chapter Chapter 2

The chapter structuring commands are described in the sections that follow; the @node
command is described in the previous chapter (see Chapter 3 [Nodes], page 27).

4.2 Structuring Command Types

The chapter structuring commands fall into four groups, each of which contains structuring
commands at the levels of chapters, sections, subsections, and subsubsections:

• The @chapter-like commands and @appendix-like commands produce numbered or
lettered entries both in the body of a document and in its table of contents.

• The @unnumbered-like commands produce unnumbered entries both in the body of a
document and in its table of contents. The @top command, which has a special use, is

Chapter 4: Chapter Structuring 39

a member of this group (see Section 3.5 [@top Command], page 31). An @unnumbered

section is a normal part of the document structure.

• The @heading-like commands produce simple unnumbered headings that do not appear
in a table of contents, are not associated with nodes, and cannot be cross-referenced.
These heading commands never start a new page.

In printed output, the chapter structuring commands produce headings in the document.
When a @setchapternewpage command says to do so, the @chapter, @unnumbered, and
@appendix commands start new pages in the printed manual; the @heading commands do
not. See Section E.1 [@setchapternewpage], page 275.

In Info and plain text output, the command causes the title to appear on a line by itself,
with a line of an ASCII character (‘*’, ‘=’, . . .) inserted underneath. For example, the
“Chapter Structuring” heading could be:

5 Chapter Structuring

The underlining character is the same for all the commands at the same level. For instance,
it is the same for the chapter-level commands @chapter, @apppendix, @unnumbered and
@chapheading.

In HTML, the chapter-level commands produce an <h2>-level header by default (con-
trolled by the CHAPTER_HEADER_LEVEL customization variable, see Section 19.4.8 [Other
Customization Variables], page 183). The heading element level is adjusted for the other
commands.

In the DocBook output, the appropriate level of element is used. The produced element
includes all following sections up to the next command at the same or higher level. For
example, a <chapter> element is produced for @chapter, and contains any sections or
subsections in the chapter.

Here is a summary:

No new page
Numbered Unnumbered Lettered/numbered Unnumbered
In contents In contents In contents Not in contents

@top @majorheading

@chapter @unnumbered @appendix @chapheading

@section @unnumberedsec @appendixsec @heading

@subsection @unnumberedsubsec @appendixsubsec @subheading

@subsubsection @unnumberedsubsubsec @appendixsubsubsec @subsubheading

4.3 @chapter: Chapter Structuring

@chapter identifies a chapter in the document–the highest level of the normal document
structuring hierarchy. Write the command at the beginning of a line and follow it on the
same line by the title of the chapter. The chapter is numbered automatically, starting from 1.

For example, the present chapter in this manual is entitled “Chapter Structuring”; the
@chapter line looks like this:

@chapter Chapter Structuring

Chapter 4: Chapter Structuring 40

4.4 @unnumbered, @appendix: Chapters with Other Labeling

Use the @unnumbered command to start a chapter-level element that appears without chapter
numbers of any kind. Use the @appendix command to start an appendix that is labeled
by letter (‘A’, ‘B’, . . .) instead of by number; appendices are also at the chapter level of
structuring.

Write an @appendix or @unnumbered command at the beginning of a line and follow it
on the same line by the title, just as with @chapter.

Texinfo also provides a command @centerchap, which is analogous to @unnumbered, but
centers its argument in the printed and HTML outputs. This kind of stylistic choice is not
usually offered by Texinfo. You are recommended not to use this command, as it may be
removed in future releases of Texinfo.

With @unnumbered, if the name of the associated node is one of these English words
(case-insensitive):

Acknowledgements Colophon Dedication Preface

then the DocBook output uses corresponding special tags (<preface>, etc.) instead of the
default <chapter>. The argument to @unnumbered itself can be anything, and is output as
the element title as usual.

4.5 @majorheading, @chapheading: Chapter-level Headings

The @majorheading and @chapheading commands produce chapter-like headings in the
body of a document.

However, neither command produces an entry in the table of contents, and neither
command causes TEX to start a new page in a printed manual.

In TEX, a @majorheading command generates a larger vertical whitespace before the
heading than a @chapheading command but is otherwise the same.

In other output formats, the @majorheading and @chapheading commands produce a
similar output to @chapter. The difference is the lack of numbering and the lack of any
association with nodes. See Section 4.3 [@chapter], page 39.

4.6 @section: Sections Below Chapters

An @section command identifies a section within a chapter unit, whether created with
@chapter, @unnumbered, or @appendix, following the numbering scheme of the chapter-level
command. Thus, within a @chapter chapter numbered ‘1’, the sections are numbered ‘1.1’,
‘1.2’, etc.; within an @appendix “chapter” labeled ‘A’, the sections are numbered ‘A.1’, ‘A.2’,
etc.; within an @unnumbered chapter, the section gets no number.

To make a section, write the @section command at the beginning of a line and follow it
on the same line by the section title. For example:

@section This is a section

Section titles are listed in the table of contents.

Chapter 4: Chapter Structuring 41

4.7 @unnumberedsec, @appendixsec, @heading

The @unnumberedsec, @appendixsec, and @heading commands are, respectively, the un-
numbered, appendix-like, and heading-like equivalents of the @section command (see the
previous section).

@unnumberedsec and @appendixsec do not need to be used in ordinary circumstances,
because @section may also be used within @unnumbered and @appendix chapters; again,
see the previous section.

@unnumberedsec

The @unnumberedsec command may be used within an unnumbered chapter or
within a regular chapter or appendix to produce an unnumbered section.

@appendixsec

@appendixsection

@appendixsection is a longer spelling of the @appendixsec command; the two
are synonymous.

Conventionally, the @appendixsec or @appendixsection command is used only
within appendices.

@heading You may use the @heading command (almost) anywhere for a section-style
heading that will not appear in the table of contents. The @heading-series com-
mands can appear inside most environments, for example, though pathological
and useless locations such as an argument to another command, etc., are not
allowed.

4.8 @subsection: Subsections Below Sections

Subsections are to sections as sections are to chapters; see Section 4.6 [@section], page 40.
For example:

@subsection This is a subsection

Subsection titles are listed in the table of contents.

4.9 The @subsection-like Commands

The @unnumberedsubsec, @appendixsubsec, and @subheading commands are, respectively,
the unnumbered, appendix-like, and heading-like equivalents of the @subsection command.
(See Section 4.8 [@subsection], page 41.)

@unnumberedsubsec and @appendixsubsec do not need to be used in ordinary cir-
cumstances, because @subsection may also be used within sections of @unnumbered and
@appendix chapters (see Section 4.6 [@section], page 40).

An @subheading command produces a heading like that of a subsection except
that it is not numbered and does not appear in the table of contents. Similarly, an
@unnumberedsubsec command produces an unnumbered heading like that of a subsection
and an @appendixsubsec command produces a subsection-like heading labeled with a
letter and numbers; both of these commands produce headings that appear in the table of
contents.

Chapter 4: Chapter Structuring 42

4.10 @subsubsection and Other Subsub Commands

The fourth and lowest level sectioning commands in Texinfo are the ‘subsub’ commands.
They are:

@subsubsection

Subsubsections are to subsections as subsections are to sections. (See Section 4.8
[@subsection], page 41.) Subsubsection titles appear in the table of contents.

@unnumberedsubsubsec

Unnumbered subsubsection titles appear in the table of contents, but lack
numbers. Otherwise, unnumbered subsubsections are the same as subsubsections.

@appendixsubsubsec

Conventionally, appendix commands are used only for appendices and are
lettered and numbered appropriately. They also appear in the table of contents.

@subsubheading

The @subsubheading command may be used anywhere that you want a small
heading that will not appear in the table of contents.

As with subsections, @unnumberedsubsubsec and @appendixsubsubsec do not need
to be used in ordinary circumstances, because @subsubsection may also be used within
subsections of @unnumbered and @appendix chapters (see Section 4.6 [@section], page 40).

4.11 @part: Groups of Chapters

The final sectioning command is @part, to mark a part of a manual, that is, a group of
chapters or (rarely) appendices. This behaves quite differently from the other sectioning
commands, to fit with the way such “parts” are conventionally used in books.

No @node command is associated with @part. Just write the command on a line by itself,
including the part title, at the place in the document you want to mark off as starting that
part. For example:

@part Part I:@* The beginning

As can be inferred from this example, no automatic numbering or labeling of the @part
text is done. The text is taken as-is.

Because parts are not associated with nodes, no general text can follow the @part line.
To produce the intended output, it must be followed by a chapter-level command (including
its node). Thus, to continue the example:

@part Part I:@* The beginning

@node Introduction

@chapter Introduction

...

In the TEX output, the @part text is included in both the normal and short tables of
contents (see Section 2.9 [Contents], page 22), without a page number (since that is the
normal convention). In addition, a “part page” is output in the body of the document, with
just the @part text. In the example above, the @* causes a line break on the part page
(but is replaced with a space in the tables of contents). This part page is always forced

Chapter 4: Chapter Structuring 43

to be on an odd (right-hand) page, regardless of the chapter pagination (see Section E.1
[@setchapternewpage], page 275). In the LATEX output, the @part is output as \part.

In the HTML output, the @part text is similarly included in the tables of contents, and a
heading is included in the main document text, as part of the following chapter or appendix
node.

In the DocBook output, the <part> element includes all the following chapters, up to
the next <part>. A <part> containing chapters is also closed at an appendix.

In the Info and plain text output, @part has no effect.

@part is ignored when raising or lowering sections (see next section). That is, it is never
lowered and nothing can be raised to it.

4.12 Raise/lower Sections: @raisesections and
@lowersections

The @raisesections and @lowersections commands implicitly raise and lower the hierar-
chical level of following chapters, sections and the other sectioning commands (excluding
parts).

That is, the @raisesections command changes sections to chapters, subsections to
sections, and so on. Conversely, the @lowersections command changes chapters to sec-
tions, sections to subsections, and so on. Thus, a @lowersections command cancels a
@raisesections command, and vice versa.

As a practical matter, you generally only want to raise or lower large chunks, usually in
external files. You can use @lowersections to include text written as an outer or standalone
Texinfo file in another Texinfo file as an inner, included file (see Chapter 17 [Include Files],
page 155). Typical usage looks like this:

@lowersections

@include somefile.texi

@raisesections

(Without the @raisesections, all the subsequent sections in the main file would also be
lowered.)

If the included file being lowered has a @top node, you’ll need to conditionalize its
inclusion with a flag (see Section 15.5.1 [@set @value], page 138).

Any menus in the final result have to take the raising and lowering into account, so
arbitrarily sprinkling @raisesections and @lowersections commands throughout the
document will likely lead to errors (unless the menus in your document are all generated
automatically).

Repeated use of the commands continues to raise or lower the hierarchical level a step at a
time. An attempt to raise above ‘chapter’ reproduces chapter commands; an attempt to lower
below ‘subsubsection’ reproduces subsubsection commands. Also, lowered subsubsections
and raised chapters will not work with texi2any’s feature of implicitly determining node
pointers, since the menu structure cannot be represented correctly.

Write each @raisesections and @lowersections command on a line of its own.

44

5 Cross-references

Cross-references are used to refer the reader to other parts of the same or different Texinfo
files.

Use cross-references to provide access to information that is too detailed for the current
context, or incidental to it. An online help system or a reference manual is not like a novel;
few read such documents in sequence from beginning to end. Instead, people look up what
they need. For this reason, such creations should contain many cross-references to help
readers find other information that they may not have read.

In a printed manual, a cross-reference results in a page reference, unless it is to another
manual altogether, in which case the cross-reference names that manual. In Info, a cross-
reference results in an entry that you can follow using the Info ‘f’ command. (See Section
“Following cross-references” in Info.) In HTML, a cross-reference results in an hyperlink. In
DocBook, the <link> element is used for cross-references unless it is to another manual, in
which case the cross-reference names that manual.

The various cross-reference commands use nodes, anchors (see Section 5.11 [@anchor],
page 50) or float labels (see Section 9.1.1 [@float], page 84) to define cross-reference locations.
When TEX generates a DVI file, it records each cross-reference location page number and
uses the page numbers in making references. Thus, even if you are writing a manual that will
only be printed, and not used online, you must nonetheless write @node lines (or @anchor
anchors) in order to name the places to which you make cross-references.

5.1 Different Cross-reference Commands

There are three different cross-reference commands:

@xref Used to start a sentence with an Info cross-reference saying ‘*Note name: node.’
or with ‘See . . . ’ in other output formats.

@ref Used within or, more often, at the end of a sentence; produces an Info cross-
reference saying ‘*note name: node.’, and just the reference in other output
formats, without the preceding ‘See’.

@pxref Used within parentheses, at the end of a sentence, or otherwise before punctu-
ation, to make a reference. Its output starts with a lowercase ‘*note’ in Info,
and with a lowercase ‘see’ in the other output formats. (‘p’ is for ‘parenthesis’.)

Additionally, there are commands to produce references to documents outside the Texinfo
system. The @cite command is used to make references to books and manuals. @url

produces a URL, for example a reference to a page on the World Wide Web.

5.2 Parts of a Cross-reference

A cross-reference command requires only one argument, which is the name of the node to
which it refers. A cross-reference command may contain up to four additional arguments.
The template for a full five argument cross-reference looks like this:

@xref{node-name, online-label, printed-label,
manual-name, printed-manual-title}

Chapter 5: Cross-references 45

The five possible arguments for a cross-reference are:

1. The node or anchor name. This is the location to which the cross-reference takes you.
In a printed document, the location of the node provides the page reference only for
references within the same document. Use @node to define the node (see Section 3.1
[Writing a Node], page 27), @anchor (see Section 5.11 [@anchor], page 50), or @float
(see Section 9.1.1 [@float], page 84) with a label. This argument is required (except
for reference to whole manuals).

Write a node name in a cross-reference in exactly the same way as in the @node line,
including the same capitalization; otherwise, the processors may not find the reference.

2. A label for online output. It is usually omitted; then the topic description (third
argument) is used if it was specified; if that was omitted as well, the node name is used.

3. A label for printed output. Often, this is the title or topic of the section. This is used
as the name of the reference in the printed manual. If omitted, the node name is used.

4. The name of the manual to which the reference refers, if it is outside the current manual,
in a different Texinfo file.

5. The title of the printed manual to which the reference refers, from a different Texinfo
file.

Whitespace before and after the commas separating these arguments is ignored. To
include a comma in one of the arguments, use @comma{} (see Section 11.1.3 [Inserting a
Comma], page 98).

Cross-references with one, two, three, four, and five arguments are described separately
in following sections.

When processing with TeX, a comma is automatically inserted after the page number
for cross-references to within the same manual, unless the closing brace of the argument
is followed by non-whitespace (such as a comma or period). This gives you the choice of
whether to have a comma there in other output formats. For example,

@xref{Another Section} for more info

with TeX produces ‘See Another Section, page ppp, for more info’, and in the Info output
produces ‘*Note Another Section:: for more info’.

If an unwanted comma is added, follow the argument with a command such as ‘@:’. For
example, ‘@xref{Hurricanes}@: --- for the details’ produces

See Hurricanes, page ppp — for the details

instead of ‘See Hurricanes, page ppp, — for the details’.

texi2any warns and protect names when the text of a cross-reference (and node names
and menu items) contains a problematic construct that could interfere with its parsing in
Info. See [Info Node Names Constraints], page 29.

5.3 @xref with One Argument

The simplest form of @xref takes one argument, the name of another node in the same
Texinfo file.

Chapter 5: Cross-references 46

For example,

@xref{Tropical Storms}.

produces

*Note Tropical Storms::.

in Info and

See Section 3.1 [Tropical Storms], page 24.

in a printed manual.

5.4 @xref with Two Arguments

With two arguments, the second is used as a label for the online output.

The template is like this:

@xref{node-name, online-label}.

For example,

@xref{Electrical Effects, Lightning}.

produces:

*Note Lightning: Electrical Effects.

in Info and

See Section 5.2 [Electrical Effects], page 57.

in a printed manual, where the node name is printed.

The second argument to cross-references shares constraints with node names. The
potentially problematic character in this context is the colon. See [Info Node Names
Constraints], page 29.

5.5 @xref with Three Arguments

A third argument replaces the node name in the printed output. The third argument should
be the name of the section in the printed output, or else state the topic discussed by that
section.

The template is like this:

@xref{node-name, online-label, printed-label}.

For example,

@xref{Electrical Effects, Lightning, Thunder and Lightning},

for details.

produces

*Note Lightning: Electrical Effects, for details.

in Info and

See Section 5.2 [Thunder and Lightning], page 57, for details.

in a printed manual.

If a third argument is given and the second one is empty, then the third argument serves
for both. (Note how two commas, side by side, mark the empty second argument.)

@xref{Electrical Effects, , Thunder and Lightning},

for details.

Chapter 5: Cross-references 47

produces

*Note Thunder and Lightning: Electrical Effects, for details.

in Info and

See Section 5.2 [Thunder and Lightning], page 57, for details.

in a printed manual.

The third argument to cross-references shares constraints with node names. The poten-
tially problematic character in this context is the colon. See [Info Node Names Constraints],
page 29.

As a practical matter, it is often best to write cross-references with just the first argument
if the node name and the section title are the same (or nearly so), and with the first and
third arguments only if the node name and title are different.

Texinfo offers a setting to use the section title instead of node names by default in
cross-references (an explicitly specified third argument still takes precedence):

@xrefautomaticsectiontitle on

Typically this line would be given near the beginning of the document and used for the
whole manual. But you can turn it off if you want (@xrefautomaticsectiontitle off),
for example, if you’re including some other sub-document that doesn’t have suitable section
names. This setting also applies to node headers in HTML, if @xrefautomaticsectiontitle
is on, the sections names are used in node headers instead of the node names when possible.

5.6 @xref with Four and Five Arguments

In a cross-reference, a fourth argument specifies the name of another manual, different from
the file in which the reference appears, and a fifth argument specifies its title as a printed
manual.

The full template is:

@xref{node-name, online-label, printed-label,
manual-name, printed-manual-title}.

For example,

@xref{Electrical Effects, Lightning, Thunder and Lightning,

weather, An Introduction to Meteorology}.

produces this output in Info:

*Note Lightning: (weather)Electrical Effects.

As you can see, the name of the manual is enclosed in parentheses and precedes the name
of the node. In HTML, the manual name and the node name are used to construct the
hyperlink URL (see Section 21.7 [HTML Xref], page 209), while the link text is based on
the label.

In a printed manual, the reference looks like this:

See section “Thunder and Lightning” in An Introduction to Meteorology.

The title of the printed manual is typeset like @cite; and the reference lacks a page number
since the page a reference refers when that reference is to another manual cannot be known.

Chapter 5: Cross-references 48

Next case: often, you will leave out the second argument when you use the long version
of @xref. In this case, the third argument, the topic description, will be used as the
cross-reference name in online formats. For example,

@xref{Electrical Effects, , Thunder and Lightning,

weather, An Introduction to Meteorology}.

produces

*Note Thunder and Lightning: (weather)Electrical Effects.

in Info and

See section “Thunder and Lightning” in An Introduction to Meteorology.

in a printed manual.

Next case: If the node name and the section title are the same in the other manual, you
may also leave out the section title. In this case, the node name is used in both instances.
For example,

@xref{Electrical Effects,,,

weather, An Introduction to Meteorology}.

produces

*Note (weather)Electrical Effects::.

in Info and

See section “Electrical Effects” in An Introduction to Meteorology.

in a printed manual.

In general, there is no reason to have a manual name argument without a printed
manual argument, unless no printed manual is generated. You may also want to refer to
another manual file that is within a single printed manual—when multiple Texinfo files are
incorporated into the same printed manual but can create separate output files in other
output formats. In this case, you need to specify only the fourth argument, and not the
fifth. If the printed manual title argument is missing, the manual name will be used instead
in printed output.

A printed manual title argument without an online manual argument is of little use unless
only a printed manual is generated from the Texinfo source. The result in online formats
depends on the format, and can be, for example, an empty manual name or a reference to
the printed manual formatted in a similar way to the printed output.

Finally, it’s also allowed to leave out all the arguments except the fourth and fifth, to
refer to another manual as a whole. See the next section.

5.7 Referring to a Manual as a Whole

Ordinarily, you must always name a node in a cross-reference. However, it’s not unusual to
want to refer to another manual as a whole, rather than a particular section within it. In
this case, giving any section name is an unnecessary distraction.

So, with cross-references to other manuals (see Section 5.6 [Four and Five Arguments],
page 47), if the first argument is either ‘Top’ (capitalized just that way) or omitted entirely,
and the third argument is omitted, the printed output includes no node or section name.
(The Info output includes ‘Top’ if it was given.) For example,

@xref{Top,,, make, The GNU Make Manual}.

Chapter 5: Cross-references 49

produces

*Note (make)Top::.

and

See The GNU Make Manual.

Info readers will go to the Top node of the manual whether or not the ‘Top’ node is explicitly
specified.

It’s also possible (and is historical practice) to refer to a whole manual by specifying the
‘Top’ node and an appropriate entry for the third argument to the @xref command. Using
this idiom, to make a cross-reference to The GNU Make Manual, you would write:

@xref{Top,, Overview, make, The GNU Make Manual}.

which produces

*Note Overview: (make)Top.

in Info and

See section “Overview” in The GNU Make Manual.

in a printed manual.

In this example, ‘Top’ is the name of the first node, and ‘Overview’ is the name of the
first section of the manual. There is no widely-used convention for naming the first section
in a printed manual, this is just what the Make manual happens to use. This arbitrariness
of the first name is a principal reason why omitting the third argument in whole-manual
cross-references is preferable.

5.8 @xref

The @xref command generates a cross-reference for the beginning of a sentence. Examples
of using @xref are in previous sections.

5.9 @ref

@ref is nearly the same as @xref except that it does not generate a ‘See’ in the output, just
the reference itself. This makes it useful as the last part of a sentence.

For example,

For more information, @pxref{This}, and @ref{That}.

produces in Info:

For more information, *note This::, and *note That::.

and in printed output:

For more information, see Section 1.1 [This], page 1, and Section 1.2 [That],
page 2.

The @ref command can tempt writers to express themselves in a manner that is suitable
for a printed manual but looks awkward in the Info format. Bear in mind that your audience
could be using both the printed and other output formats such as Info. For example:

Sea surges are described in @ref{Hurricanes}.

looks ok in the printed output:

Sea surges are described in Section 6.7 [Hurricanes], page 72.

Chapter 5: Cross-references 50

but is awkward to read in Info, “note” being a verb:

Sea surges are described in *note Hurricanes::.

5.10 @pxref

The parenthetical reference command, @pxref, is nearly the same as @xref, but it is best
used within parentheses. The command differs from @xref in that the reference is typeset
with a lowercase ‘see’ rather than an uppercase ‘See’. In Info, ‘*note’ is output.

With one argument, a parenthetical cross-reference looks like this:

... storms cause flooding (@pxref{Hurricanes}) ...

which produces

... storms cause flooding (*note Hurricanes::) ...

in Info and

. . . storms cause flooding (see Section 6.7 [Hurricanes], page 72) . . .

in a printed manual.

In past versions of Texinfo, it was not allowed to write punctuation after a @pxref, so
it could be used only before a right parenthesis. This is no longer the case. The effect
of ‘@pxref{node-name}’ is similar to that of ‘see @ref{node-name}’. However, in many
circumstances the latter is preferable, as this makes it clear in the Info output that the word
“see” should be present.

5.11 @anchor: Defining Arbitrary Cross-reference Targets

An anchor is a position in your document, labelled so that cross-references can refer to it,
just as they can to nodes. You create an anchor with the @anchor command, and give the
label as a normal brace-delimited argument. For example:

This marks the @anchor{x-spot}spot.

...

@xref{x-spot,,the spot}.

produces:

This marks the spot.

...

See [the spot], page 1.

As you can see, the @anchor command itself produces no output. This example defines
an anchor ‘x-spot’ just before the word ‘spot’. You can refer to it later with an @xref or
other cross reference command, as shown (see Chapter 5 [Cross References], page 44).

It is best to put @anchor commands just before the position you wish to refer to; that
way, the reader’s eye is led on to the correct text when they jump to the anchor. You can put
the @anchor command on a line by itself if that helps readability of the source. Whitespace
(including newlines) is ignored after @anchor.

Anchor names, node names and float labels may not conflict. Anchors, nodes and float
labels are given similar treatment in some ways; for example, the goto-node command
takes either an anchor name or a node name as an argument. (See Section “Go to node” in
Info.). Anchors names and float labels could also appear in menus (see Section 3.9 [Menus],

Chapter 5: Cross-references 51

page 34) and node direction pointers (see Section 3.1 [Writing a Node], page 27), although
this is not recommended.

Anchor names share the same constraints as nodes on the characters that can be included
(see [Info Node Names Constraints], page 29).

Because of this duality, when you delete or rename a node, it is usually a good idea to
define an @anchor with the old name. That way, any links to the old node, whether from
other Texinfo manuals or general web pages, keep working.

5.12 @link: Plain, unadorned hyperlink

@link produces a plain hyperlink in output formats that support it, including in HTML,
DocBook, LATEX and online PDF. The template is:

@link{node-name, label, manual-name}

node-name is the name of the target node or anchor. Either or both of label and manual-
name can be omitted. label, if given, is the text to use for the link. manual-name is the
name of the external manual that the target appears within; if not given, the reference is to
the current manual.

@link has similar output to @ref, except that it does produce any extra text around the
link label in Info or printed output that would mark it as a cross-reference.

Be careful about using @link to produce links that are necessary for a user to move
around a manual, as these links will do nothing in these output formats. @link is best
used to add convenience links that are nonetheless not essential for a reader to understand
the text of the manual. For example, you might use @link in a code sample to reference
documentation of a symbol in a programming library.

5.13 @inforef: Cross-references to Info-only Material

@inforef is used for making cross-references to Info documents—even from a printed manual.
This was originally used for Info files that were not generated from any Texinfo source. The
command is now obsolete and should not be used. In addition to having little use, similar
output can be obtained with @xref, @ref or @pxref with the Info file name as the fourth
argument and no fifth argument.

The command takes either two or three arguments, in the following order:

1. The node name.

2. The cross-reference name (optional).

3. The Info file name.

The template is:

@inforef{node-name, cross-reference-name, info-file-name}

5.14 @url, @uref{url[, text][, replacement]}

@url produces a reference to a uniform resource locator (URL). It takes one mandatory
argument, the URL, and two optional arguments which control the text that is displayed.
In HTML and PDF output, @url produces a link you can follow. (To merely indicate

Chapter 5: Cross-references 52

a URL without creating a link people can follow, use @indicateurl, see Section 6.1.15
[@indicateurl], page 63.)

@uref is a synonym for @url. (Originally, @url had the meaning of @indicateurl and
@uref was required to produce a working link, but in practice @url was almost always
misused. So we’ve changed the meaning.)

The second argument, if specified, is the text to display (the default is the URL itself);
in output formats other than HTML, the URL is output in addition to this text.

The third argument, if specified, is the text to display, but in this case the URL is not
output in any format. This is useful when the text is already sufficiently referential, as in a
man page. Also, if the third argument is given, the second argument is ignored.

5.14.1 @url Examples

First, here is an example of the simplest form of @url, with just one argument. The given
URL is both the target and the visible text of the link:

The official GNU ftp site is @url{http://ftp.gnu.org/gnu}.

produces:

The official GNU ftp site is http://ftp.gnu.org/gnu.

Two-argument form of @url

Here is an example of the two-argument form:

The official @url{http://ftp.gnu.org/gnu, GNU ftp site}

holds programs and texts.

which produces:

The official GNU ftp site (http://ftp.gnu.org/gnu)
holds programs and texts.

The HTML output is this:

The official GNU ftp site

holds programs and texts.

In other formats, the output is like this:

The official GNU ftp site (http://ftp.gnu.org/gnu)

holds programs and texts.

Three-argument form of @url

Finally, an example of the three-argument form:

The @url{/man.cgi/1/ls,,ls} program ...

which, except for HTML, produces:

The ls program . . .

but with HTML:

The ls program ...

By the way, some people prefer to display URLs in the unambiguous format:

<URL:http://host/path>

http://ftp.gnu.org/gnu
http://ftp.gnu.org/gnu
/man.cgi/1/ls

Chapter 5: Cross-references 53

You can use this form in the input file if you wish. We feel it’s not necessary to include the
‘<URL:’ and ‘>’ in the output, since to be useful any software that tries to detect URLs in
text already has to detect them without the ‘<URL:’.

5.14.2 URL Line Breaking

TEX allows line breaking within URLs at only a few characters (which are special in URLs):
‘&’, ‘.’, ‘#’, ‘?’, and ‘/’ (but not between two ‘/’ characters). A tiny amount of stretchable
space is also inserted around these characters to help with line breaking.

For HTML output, modern browsers will also do line breaking within displayed URLs. If
you need to allow breaks at other characters you can insert @/ as needed (see Section 12.2
[Line Breaks], page 114).

By default, in TEX any such breaks at special characters will occur after the character.
Some people prefer such breaks to happen before the special character. This can be controlled
with the @urefbreakstyle command (this command has effect only in TEX):

@urefbreakstyle how

where the argument how is one of these words:

‘after’ (the default) Potentially break after the special characters.

‘before’ Potentially break before the special characters.

‘none’ Do not consider breaking at the special characters at all; any potential breaks
must be manually inserted.

5.14.3 @url PDF Output Format

If the ultimate purpose of a PDF is only to be viewed online, perhaps similar to HTML in
some inchoate way, you may not want the URLs to be included in the visible text (just as
URLs are not visible to readers of web pages). Texinfo provides a PDF-specific option for
this, which must be used inside @tex:

@tex

\global\urefurlonlylinktrue

@end tex

The result is that @url{http://www.gnu.org, GNU} has the visible output of just ‘GNU’,
with a link target of http://www.gnu.org. Ordinarily, the visible output would include
both the label and the url: ‘GNU (http://www.gnu.org)’.

This option only has effect when the PDF output is produced with the pdfTEX program,
not with other ways of getting from Texinfo to PDF (e.g., TEX to DVI to PDF). Consequently,
it is ok to specify this option unconditionally within @tex, as shown above. It is ignored
when DVI is being produced.

5.15 @cite{reference}
Use the @cite command for the name of a book that lacks a companion Info file. For
example, we could refer to A Book. The command selects a slanted font in the printed
manual, and generates quotation marks in the Info file.

If a book is written in Texinfo, it is better to use a cross-reference command since a
reader can easily follow such a reference in Info. See Section 5.8 [@xref], page 49.

http://www.gnu.org
http://www.gnu.org

Chapter 5: Cross-references 54

5.16 PDF Colors

By default, URLs and cross-reference links are printed in black in PDF output. Very
occasionally, however, you may want to highlight such “live” links with a different color, as
is commonly done on web pages. Texinfo provides a PDF-specific option for specifying these
colors, which must be used inside @tex:

@tex

\global\def\linkcolor{1 0 0} % red

\global\def\urlcolor{0 1 0} % green

@end tex

\urlcolor changes the color of @url output (both the actual URL and any textual label),
while \linkcolor changes the color for cross-references to nodes, etc. They are independent.

The three given values must be numbers between 0 and 1, specifying the amount of red,
green, and blue respectively.

These definitions only have an effect when the PDF output is produced with the pdfTEX
program, not with other ways of getting from Texinfo to PDF (e.g., TEX to DVI to PDF).
Consequently, it is ok to specify this option unconditionally within @tex, as shown above. It
is ignored when DVI is being produced.

We do not recommend colorizing just for fun; unless you have a specific reason to use
colors, best to skip it.

55

6 Marking Text, Words and Phrases

In Texinfo, you can mark words and phrases in a variety of ways. The Texinfo processors
use this information to determine how to highlight the text. You can specify, for example,
whether a word or phrase is a defining occurrence, a metasyntactic variable, or a symbol
used in a program. Also, you can emphasize text, in several different ways.

6.1 Indicating Definitions, Commands, etc.

Texinfo has commands for indicating just what kind of object a piece of text refers to. For
example, email addresses are marked by @email; that way, the result can be a live link to
send email when the output format supports it. If the email address was simply marked as
“print in a typewriter font”, that would not be possible.

6.1.1 Highlighting Commands are Useful

The commands serve a variety of purposes:

@code{sample-code}
Indicate text that is a literal example of a piece of a program. See Section 6.1.2
[@code], page 56.

@kbd{keyboard-characters}
Indicate keyboard input. See Section 6.1.3 [@kbd], page 57.

@key{key-name}
Indicate the conventional name for a key on a keyboard. See Section 6.1.4 [@key],
page 58.

@samp{text}
Indicate text that is a literal example of a sequence of characters. See Sec-
tion 6.1.5 [@samp], page 58.

@verb{text}
Write a verbatim sequence of characters. See Section 6.1.6 [@verb], page 59.

@var{metasyntactic-variable}
Indicate a metasyntactic variable. See Section 6.1.7 [@var], page 59.

@env{environment-variable}
Indicate an environment variable. See Section 6.1.8 [@env], page 60.

@file{file-name}
Indicate the name of a file. See Section 6.1.9 [@file], page 60.

@command{command-name}
Indicate the name of a command. See Section 6.1.10 [@command], page 61.

@option{option}
Indicate a command-line option. See Section 6.1.11 [@option], page 61.

@dfn{term}

Indicate the introductory or defining use of a term. See Section 6.1.12 [@dfn],
page 61.

Chapter 6: Marking Text, Words and Phrases 56

@cite{reference}
Indicate the name of a book. See Section 5.15 [@cite], page 53.

@abbr{abbreviation}
Indicate an abbreviation, such as ‘Comput.’.

@acronym{acronym}

Indicate an acronym. See Section 6.1.14 [@acronym], page 62.

@indicateurl{uniform-resource-locator}
Indicate an example (that is, nonfunctional) uniform resource locator. See
Section 6.1.15 [@indicateurl], page 63. (Use @url (see Section 5.14 [@url],
page 51) for live URLs.)

@email{email-address[, displayed-text]}
Indicate an electronic mail address. See Section 6.1.16 [@email], page 63.

6.1.2 @code{sample-code}
Use the @code command to indicate text that is a piece of a program and which consists of
entire syntactic tokens. Enclose the text in braces.

Thus, you should use @code for an expression in a program, for the name of a variable or
function used in a program, or for a keyword in a programming language.

Use @code for command names in languages that resemble programming languages, such
as Texinfo. For example, @code and @samp are produced by writing ‘@code{@@code}’ and
‘@code{@@samp}’ in the Texinfo source, respectively.

It is incorrect to alter the case of a word inside a @code command when it appears at
the beginning of a sentence. Most computer languages are case sensitive. In C, for example,
Printf is different from the identifier printf, and most likely is a misspelling of it. Even in
languages which are not case sensitive, it is confusing to a human reader to see identifiers
spelled in different ways. Pick one spelling and always use that. If you do not want to start a
sentence with a command name written all in lowercase, you should rearrange the sentence.

The @code argument is typeset in a typewriter (monospace) font. where the output
format allows this. For example,

The function returns @code{nil}.

produces this:

The function returns nil.

Here are some cases for which it is preferable not to use @code:

• For shell command names, such as ls (use @command).

• For environment variables, such as TEXINPUTS (use @env).

• For shell options, such as ‘-c’, when such options stand alone (use @option).

• An entire shell command often looks better if written using @samp rather than @code.
In this case, the rule is to choose the more pleasing format.

• For a string of characters shorter than a syntactic token. For example, if you are
writing about ‘goto-ch’, which is just a part of the name for the goto-char Emacs
Lisp function, you should use @samp.

Chapter 6: Marking Text, Words and Phrases 57

• In general, when writing about the characters used in a token; for example, do not use
@code when you are explaining what letters or printable symbols can be used in the
names of functions. (Use @samp.) Also, you should not use @code to mark text that
is considered input to programs unless the input is written in a language that is like
a programming language. For example, you should not use @code for the keystroke
commands of GNU Emacs (use @kbd instead) although you may use @code for the
names of the Emacs Lisp functions that the keystroke commands invoke.

By default, TEX will consider breaking lines at ‘-’ and ‘_’ characters within @code

and related commands. This can be controlled with @allowcodebreaks (see Section 12.4
[@allowcodebreaks], page 115). In the HTML output breaking lines is up to the browser’s
behavior. For Info, it seems better never to make such breaks.

For Info and plaintext, quotation characters are usually output around the output of
the @code command and related commands (e.g., @kbd, @command) except in typewriter-like
contexts such as the @example environment (see Section 7.4 [@example], page 68) and @code

itself, etc. To control which quoting characters are inserted by texi2any in the output of
‘@code’, etc., see the OPEN_QUOTE_SYMBOL and CLOSE_QUOTE_SYMBOL customization variables
(see Section 19.4.8 [Other Customization Variables], page 183).

6.1.3 @kbd{keyboard-characters}
Use the @kbd command for characters of input to be typed by users. For example, to refer
to the characters M-a, write:

@kbd{M-a}

and to refer to the characters M-x shell, write:

@kbd{M-x shell}

By default, the @kbd command produces a different font (slanted typewriter instead of
normal typewriter, where the output format allows), so users can distinguish the characters
that they are supposed to type from those that the computer outputs.

Since the usage of @kbd varies from manual to manual, you can control the font switching
with the @kbdinputstyle command. This command has no effect on Info output. Write
this command at the beginning of a line with a single word as an argument, one of the
following:

‘code’ Always use the same font for @kbd as @code.

‘example’ Use the distinguishing font for @kbd only in @example and similar environments.

‘distinct’
(the default) Always use the distinguishing font for @kbd.

You can embed another @-command inside the braces of a @kbd command. Here, for
example, is the way to describe a command that would be described more verbosely as
“press the ‘r’ key and then press the RETURN key”:

@kbd{r @key{RET}}

This produces: r RET. (The present manual uses the default for @kbdinputstyle.)

You also use the @kbd command if you are spelling out the letters you type; for example:

To give the @code{logout} command,

Chapter 6: Marking Text, Words and Phrases 58

type the characters @kbd{l o g o u t @key{RET}}.

This produces:

To give the logout command, type the characters l o g o u t RET.

(Also, this example shows that you can add spaces for clarity. If you explicitly want to
mention a space character as one of the characters of input, write @key{SPC} for it.)

6.1.4 @key{key-name}
Use the @key command for the conventional name for a key on a keyboard, as in:

@key{RET}

You can use the @key command within the argument of an @kbd command when the
sequence of characters to be typed includes one or more keys that are described by name.

For example, to produce C-x ESC and M-TAB you would type:

@kbd{C-x @key{ESC}}

@kbd{M-@key{TAB}}

Here is a list of the recommended names for keys:

SPC Space

RET Return

LFD Linefeed (however, since most keyboards nowadays do not have a
Linefeed key, it might be better to call this character C-j)

TAB Tab

BS Backspace

ESC Escape

DELETE Delete

SHIFT Shift

CTRL Control

META Meta

There are subtleties to handling words like ‘meta’ or ‘ctrl’ that are names of modifier
keys. When mentioning a character in which the modifier key is used, such as Meta-a, use
the @kbd command alone; do not use the @key command; but when you are referring to the
modifier key in isolation, use the @key command. For example, write ‘@kbd{Meta-a}’ to
produce Meta-a and ‘@key{META}’ to produce META.

6.1.5 @samp{text}
Use the @samp command to indicate text that is a literal example or ‘sample’ of a sequence
of characters in a file, string, pattern, etc. Enclose the text in braces. The argument appears
within single quotation marks; in addition, it is printed in a fixed-width font.

To match @samp{foo} at the end of the line,

use the regexp @samp{foo$}.

produces

Chapter 6: Marking Text, Words and Phrases 59

To match ‘foo’ at the end of the line, use the regexp ‘foo$’.

Any time you are referring to single characters, you should use @samp unless @kbd or
@key is more appropriate. Also, you may use @samp for entire statements in C and for entire
shell commands—in this case, @samp often looks better than @code. Basically, @samp is a
catchall for whatever is not covered by @code, @kbd, @key, @command, etc.

Only include punctuation marks within braces if they are part of the string you are
specifying. Write punctuation marks outside the braces if those punctuation marks are part
of the English text that surrounds the string. In the following sentence, for example, the
commas and period are outside of the braces:

In English, the vowels are @samp{a}, @samp{e},

@samp{i}, @samp{o}, @samp{u}, and sometimes

@samp{y}.

This produces:

In English, the vowels are ‘a’, ‘e’, ‘i’, ‘o’, ‘u’, and sometimes ‘y’.

6.1.6 @verb{chartextchar}
Use the @verb command to print a verbatim sequence of characters.

Like LATEX’s \verb command, the verbatim text can be quoted using any unique delimiter
character. Enclose the verbatim text, including the delimiters, in braces. Text is printed in
a fixed-width font:

How many @verb{|@|}-escapes does one need to print this

@verb{.@a @b.@c.} string or @verb{+@'e?`{}!`\+} this?

produces

How many @-escapes does one need to print this

@a @b.@c string or @'e?`{}!`\ this?

This is in contrast to @samp (see the previous section), @code, and similar commands; in
those cases, the argument is normal Texinfo text, where the three characters @{} are special,
as usual. With @verb, nothing is special except the delimiter character you choose.

The delimiter character itself may appear inside the verbatim text, as shown above. As
another example, ‘@verb{...}’ prints a single (fixed-width) period.

It is not reliable to use @verb inside other Texinfo constructs. In particular, it does not
work to use @verb in anything related to cross-referencing, such as section titles or figure
captions.

6.1.7 @var{metasyntactic-variable}
Use the @var command to indicate metasyntactic variables. A metasyntactic variable is
something that stands for another piece of text. For example, you should use a metasyntactic
variable in the documentation of a function to describe the arguments that are passed to
that function.

Do not use @var for the names of normal variables in computer programs. These
are specific names, so @code is correct for them. For example, the Emacs Lisp variable
texinfo-tex-command is not a metasyntactic variable; it is properly formatted using @code.

Do not use @var for environment variables either; @env is correct for them (see the next
section).

Chapter 6: Marking Text, Words and Phrases 60

The effect of @var in the Info file is to change the case of the argument to all uppercase.
In the printed manual, the argument is output in slanted type.1

For example,

To delete file @var{filename},

type @samp{rm @var{filename}}.

produces

To delete file filename, type ‘rm filename’.

(Note that @var may appear inside @code, @samp, @file, etc.)

Write a metasyntactic variable all in lowercase without spaces, and use hyphens to make
it more readable. Thus, the Texinfo source for the illustration of how to begin a Texinfo
manual looks like this:

\input texinfo

@@settitle @var{name-of-manual}

This produces:

\input texinfo

@settitle name-of-manual

In some documentation styles, metasyntactic variables are shown with angle brackets, for
example:

..., type rm <filename>

However, that is not the style that Texinfo uses.

6.1.8 @env{environment-variable}
Use the @env command to indicate environment variables, as used by many operating
systems, including GNU. Do not use it for metasyntactic variables; use @var for those (see
the previous section).

@env is equivalent to @code in its effects. For example:

The @env{PATH} environment variable ...

produces

The PATH environment variable . . .

6.1.9 @file{file-name}
Use the @file command to indicate text that is the name of a file, buffer, or directory, or is
the name of a node in Info. You can also use the command for file name suffixes. Do not
use @file for symbols in a programming language; use @code.

@file is equivalent to code in its effects. For example,

The @file{.el} files are in

the @file{/usr/local/emacs/lisp} directory.

produces

The .el files are in the /usr/local/emacs/lisp directory.

1 In TEX output, @var currently uses a slanted typewriter font in code contexts such as @code or @example.
We plan to change this in the next release to use a variable-width, slanted roman font in all contexts. To
avoid this change, set the ‘txicodevaristt’ flag using @set; specify ‘@clear txicodevaristt’ to make
this change now (see Section 15.5.1 [@set @value], page 138). Note that this flag does nothing in LATEX
output.

Chapter 6: Marking Text, Words and Phrases 61

6.1.10 @command{command-name}
Use the @command command to indicate command names, such as ls or cc.

@command is equivalent to @code in its effects. For example:

The command @command{ls} lists directory contents.

produces

The command ls lists directory contents.

You should write the name of a program in the ordinary text font, rather than using
@command, if you regard it as a new English word, such as ‘Emacs’ or ‘Bison’.

When writing an entire shell command invocation, as in ‘ls -l’, you should use either
@samp or @code at your discretion.

6.1.11 @option{option-name}
Use the @option command to indicate a command-line option; for example, -l or --version
or --output=filename.

@option is equivalent to @code in its effects. For example:

The option @option{-l} produces a long listing.

produces

The option -l produces a long listing.

6.1.12 @dfn{term}
Use the @dfn command to identify the introductory or defining use of a technical term. Use
the command only in passages whose purpose is to introduce a term which will be used
again or which the reader ought to know. Mere passing mention of a term for the first time
does not deserve @dfn. The command selects a slanted font in the printed manual, and
generates double quotation marks in the Info file. For example:

Getting rid of a file is called @dfn{deleting} it.

produces

Getting rid of a file is called deleting it.

As a general rule, a sentence containing the defining occurrence of a term should be a
definition of the term. The sentence does not need to say explicitly that it is a definition,
but it should contain the information of a definition—it should make the meaning clear.

6.1.13 @abbr{abbreviation[, meaning]}
You can use the @abbr command for general abbreviations. The abbreviation is given as the
single argument in braces, as in ‘@abbr{Comput.}’. As a matter of style, or for particular
abbreviations, you may prefer to omit periods, as in ‘@abbr{Mr} Stallman’.

@abbr accepts an optional second argument, intended to be used for the meaning of the
abbreviation.

If the abbreviation ends with a lowercase letter and a period, and is not at the end of a
sentence, and has no second argument, remember to use the @. command (see Section 11.3.3
[Ending a Sentence], page 102) to get the correct spacing. However, you do not have to
use @. within the abbreviation itself; Texinfo automatically assumes periods within the
abbreviation do not end a sentence.

Chapter 6: Marking Text, Words and Phrases 62

In output formats with an appropriate tag, such as HTML and DocBook, this tag is used.
Otherwise, the first argument is printed as-is; if the second argument is present, it is printed
in parentheses after the abbreviation. For instance:

@abbr{Comput. J., Computer Journal}

produces:

Comput. J. (Computer Journal)

For abbreviations consisting of all capital letters, you may prefer to use the @acronym

command instead. See the next section for more on the usage of these two commands.

6.1.14 @acronym{acronym[, meaning]}
You can use the @acronym command for abbreviations written in all capital letters, such as
‘NASA’. The abbreviation is given as the single argument in braces, as in ‘@acronym{NASA}’.
As a matter of style, or for particular acronyms, you may prefer to use periods, as in
‘@acronym{N.A.S.A.}’.

@acronym accepts an optional second argument, intended to be used for the meaning of
the acronym.

If the acronym is at the end of a sentence, and if there is no second argument, remember
to use the @. or similar command (see Section 11.3.3 [Ending a Sentence], page 102) to get
the correct spacing.

In TEX, the acronym is printed in slightly smaller font. In the Info output, the argument
is printed as-is. In either format, and in LATEX output, if the second argument is present, it
is printed in parentheses after the acronym. In HTML and DocBook the appropriate tag is
used.

For instance (since GNU is a recursive acronym, we use @acronym recursively):

@acronym{GNU, @acronym{GNU}'s Not Unix}

produces:

GNU (GNU’s Not Unix)

In some circumstances, it is conventional to print family names in all capitals. Don’t
use @acronym for this, since a name is not an acronym. Use @sc instead (see Section 6.2.2
[Smallcaps], page 64).

@abbr and @acronym are closely related commands: they both signal to the reader that
a shortened form is being used, and possibly give a meaning. When choosing whether to use
these two commands, please bear the following in mind.

− In common English usage, acronyms are a subset of abbreviations: they include pro-
nounceable words like ‘NATO’, ‘radar’, and ‘snafu’; some sources also include syllable
acronyms like ‘Usenet’, hybrids like ‘SIGGRAPH’, and unpronounceable initialisms like
‘FBI’.

− In Texinfo, an acronym (but not an abbreviation) should consist only of capital letters
and periods, no lowercase.

− In TEX, an acronym (but not an abbreviation) is printed in a slightly smaller font.

− It usually turns out to be quite difficult and/or time-consuming to consistently use
@acronym for all sequences of uppercase letters. Furthermore, it looks strange for some
acronyms to be in the normal font size and others to be smaller. Thus, a simpler

Chapter 6: Marking Text, Words and Phrases 63

approach you may wish to consider is to avoid @acronym and just typeset everything as
normal text in all capitals: ‘GNU’, producing the output ‘GNU’.

− In general, it’s not essential to use either of these commands for all abbreviations; use
your judgment. Text is perfectly readable without them.

6.1.15 @indicateurl{uniform-resource-locator}
Use the @indicateurl command to indicate a uniform resource locator on the World Wide
Web. This is purely for markup purposes and does not produce a link you can follow (use
the @url or @uref command for that, see Section 5.14 [@url], page 51). @indicateurl is
useful for URLs which do not actually exist. For example:

For example, the URL might be @indicateurl{http://example.org/path}.

which produces:

For example, the URL might be ‘http://example.org/path’.

The output from @indicateurl is usually like that of @samp (see Section 6.1.5 [@samp],
page 58).

6.1.16 @email{email-address[, displayed-text]}
Use the @email command to indicate an electronic mail address. It takes one mandatory
argument, the address, and one optional argument, the text to display (the default is the
address itself).

In Info, the address is shown in angle brackets, preceded by the text to display if any. In
printed output, the angle brackets are omitted. In HTML and DocBook output, @email
produces a ‘mailto’ link. In HTML, a ‘mailto’ link usually brings up a mail composition
window. For example:

Send bug reports to @email{bug-texinfo@@gnu.org},

suggestions to the @email{bug-texinfo@@gnu.org, same place}.

produces

Send bug reports to bug-texinfo@gnu.org,
suggestions to the same place.

6.2 Emphasizing Text

Usually, Texinfo changes the font to mark words in the text according to the category the
words belong to; an example is the @code command. Most often, this is the best way to
mark words. However, sometimes you will want to emphasize text without indicating a
category. Texinfo has two commands to do this. Also, Texinfo has several commands that
specify the font in which text will be output. These commands have no effect in Info and
only one of them, the @r command, has any regular use.

6.2.1 @emph{text} and @strong{text}
The @emph and @strong commands are for emphasis; @strong is stronger. In printed output,
@emph produces italics and @strong produces bold. In the Info output, @emph surrounds
the text with underscores (‘_’), and @strong puts asterisks around the text.

mailto:bug-texinfo@gnu.org
mailto:bug-texinfo@gnu.org

Chapter 6: Marking Text, Words and Phrases 64

For example,

@strong{Caution:} @samp{rm * .[^.]*}

removes @emph{all} files in the directory.

produces the following:

Caution: ‘rm * .[^.]*’ removes all files in the directory.

The @strong command is seldom used except to mark what is, in effect, a typographical
element, such as the word ‘Caution’ in the preceding example.

Caution: Do not use @strong with the word ‘Note’ followed by a space; Info
will mistake the combination for a cross-reference. Use a phrase such as Please
notice or Caution instead, or the optional argument to @quotation—‘Note’ is
allowable there.

6.2.2 @sc{text}: The Small Caps Font

Use the ‘@sc’ command to set text in a small caps font (where possible). Write the text
you want to be in small caps between braces in lowercase, like this:

Richard @sc{Stallman} a commencé le projet GNU.

This produces:

Richard Stallman a commencé le projet GNU.

As shown here, we recommend reserving @sc for special cases where you want typographic
small caps; family names are one such, especially in languages other than English, though
there are no hard-and-fast rules about such things.

TEX typesets any uppercase letters between the braces of an @sc command in full-size
capitals; only lowercase letters are printed in the small caps font. In the Info output, the
argument to @sc is printed in all uppercase. In HTML, the argument is uppercased and
the output marked with the <small> tag to reduce the font size, since HTML cannot easily
represent true small caps. In LATEX, a command setting small caps fonts is output.

Overall, we recommend using standard upper- and lowercase letters wherever possible.

6.2.3 Fonts for Printing

Texinfo provides one command to change the size of the main body font in printed output
for a document: @fonttextsize. It has no effect in other output. It takes a single argument
on the remainder of the line, which must be either ‘10’ or ‘11’. For example:

@fonttextsize 10

The effect is to reduce the body font to a 10 pt size (the default is 11 pt). Fonts for other
elements, such as sections and chapters, are reduced accordingly. This should only be used
in conjunction with @smallbook (see Section E.6 [@smallbook], page 281) or similar, since
10 pt fonts on standard paper (8.5x11 or A4) are too small. One reason to use this command
is to save pages, and hence printing cost, for physical books.

Texinfo does not at present have commands to switch the font family to use, or more
general size-changing commands.

Texinfo also provides a number of font commands that specify font changes in the printed
manual and (where possible) in the HTML and DocBook output. They have no effect in
Info. All the commands apply to a following argument surrounded by braces.

@b selects bold face;

Chapter 6: Marking Text, Words and Phrases 65

@i selects an italic font;

@r selects a roman font, which is the usual font in which text is printed. It may or
may not be seriffed.

@sansserif

selects a sans serif font;

@slanted selects a slanted font;

@t selects the fixed-width, typewriter-style font used by @code;

The @r command can be useful in example-like environments, to write comments in the
standard roman font instead of the fixed-width font. This looks better in printed output.

For example,

@lisp

(+ 2 2) ; @r{Add two plus two.}

@end lisp

produces

(+ 2 2) ; Add two plus two.

The @t command can occasionally be useful for producing output in a typewriter font
where that is supported, but no distinction with quotation marks is needed in Info or plain
text. (Compare @t{foo} producing foo with @code{foo} producing foo.) Here are some
possible reasons for using @t instead of @code:

− The argument is a single character

− There are already quotes of some kind enclosing the argument

− It’s evident from context or the argument itself that the argument could be computer
code (e.g. name of a Usenet newsgroup)

In general, the other font commands are unlikely to be useful; they exist primarily to
make it possible to document the functionality of specific font effects, such as in TEX and
related packages.

66

7 Quotations and Examples

Quotations and examples are blocks of text consisting of one or more whole paragraphs that
are set off from the bulk of the text and treated differently. They are usually indented in
the output.

In Texinfo, you always begin a quotation or example by writing an @-command at the
beginning of a line by itself, and end it by writing an @end command that is also at the
beginning of a line by itself. For instance, you begin an example by writing @example by
itself at the beginning of a line and end the example by writing @end example on a line
by itself, at the beginning of that line, and with only one space between the @end and the
example.

7.1 Block Enclosing Commands

Here is a summary of commands that enclose blocks of text, also known as environments.
They’re explained further in the following sections.

@quotation

Indicate text that is quoted. The text is filled, indented (from both margins),
and printed in a roman font by default.

@indentedblock

Like @quotation, but the text is indented only on the left.

@example Illustrate code, commands, and the like. The text is printed in a fixed-width
font, and indented but not filled.

@lisp Like @example, but specifically for illustrating Lisp code. The text is printed in
a fixed-width font, and indented but not filled.

@verbatim

Mark a piece of text that is to be printed verbatim; no character substitutions
are made and all commands are ignored, until the next @end verbatim. The
text is printed in a fixed-width font, and not indented or filled. Extra spaces
and blank lines are significant, and tabs are expanded.

@display Display illustrative text. The text is indented but not filled, and no font is
selected (so, by default, the font is roman).

@format Like @display (the text is not filled and no font is selected), but the text is not
indented.

@smallquotation

@smallindentedblock

@smallexample

@smalllisp

@smalldisplay

@smallformat

These @small... commands are just like their non-small counterparts, except
that they output text in a smaller font size, where possible.

Chapter 7: Quotations and Examples 67

@flushleft

@flushright

Text is not filled, but is set flush with the left or right margin, respectively.

@raggedright

Text is filled, but only justified on the left, leaving the right margin ragged.

@cartouche

Highlight text, often an example or quotation, by drawing a box with rounded
corners around it.

The @exdent command is used within the above constructs to undo the indentation of a
line.

The @noindent command may be used after one of the above constructs (or at the
beginning of any paragraph) to prevent the following text from being indented as a new
paragraph.

7.2 @quotation: Block Quotations

The text of a quotation is processed like normal text (regular font, text is filled) except that:

• the left margin is closer to the center of the page, so the whole of the quotation is
indented; the right margin may also be closer to the center of the page

• the first lines of paragraphs are indented no more than other lines; and

• an @author command may be given to specify the author of the quotation.

This is an example of text written between a @quotation command and an @end

quotation command. A @quotation command is most often used to indicate
text that is excerpted from another (real or hypothetical) printed work.

Write a @quotation command as text on a line by itself. This line will disappear from
the output. Mark the end of the quotation with a line beginning with and containing only
@end quotation. The @end quotation line will likewise disappear from the output.

@quotation takes one optional argument, given on the remainder of the line. This text,
if present, is included at the beginning of the quotation in bold or otherwise emphasized,
and followed with a ‘:’. For example:

@quotation Note

This is

a foo.

@end quotation

produces

Note: This is a foo.

If the @quotation argument is one of these English words (case-insensitive):

Caution Important Note Tip Warning

then the DocBook output uses corresponding special tags (<note>, etc.) instead of the
default <blockquote>.

If the author of the quotation is specified in the @quotation block with the @author

command, a line with the author name is displayed after the quotation:

@quotation

Chapter 7: Quotations and Examples 68

People sometimes ask me if it is a sin in the Church of Emacs to use

vi. Using a free version of vi is not a sin; it is a penance. So happy

hacking.

@author Richard Stallman

@end quotation

produces

People sometimes ask me if it is a sin in the Church of Emacs to use vi. Using
a free version of vi is not a sin; it is a penance. So happy hacking.

—Richard Stallman

7.3 @indentedblock: Indented text blocks

The @indentedblock environment is similar to @quotation, except that text is only indented
on the left (and there is no optional argument for an author). Thus, the text font remains
unchanged, and text is gathered and filled as usual, but the left margin is increased. For
example:

This is an example of text written between an @indentedblock command and an
@end indentedblock command. The @indentedblock environment can contain any
text or other commands desired.

This is written in the Texinfo source as:

@indentedblock

This is an example ...

@end indentedblock

7.4 @example: Example Text

The @example environment is used to indicate computer input or output that is not part
of the running text. If you want to embed code fragments within sentences, use the @code
command or its relatives instead (see Section 6.1.2 [@code], page 56).

Write an @example command at the beginning of a line by itself. Mark the end of the
block with @end example. For example,

@example

cp foo @var{dest1}; \

cp foo @var{dest2}

@end example

produces

cp foo dest1; \

cp foo dest2

The output uses a fixed-width font and is indented. Each line in the input file is a line in
the output; that is, the source text is not filled. Extra spaces and blank lines are significant.
Texinfo commands are expanded; if you want the output to be the input verbatim, use the
@verbatim environment instead (see Section 7.5 [@verbatim], page 69).

Examples are often, logically speaking, “in the middle” of a paragraph, and the text
that continues afterwards should not be indented, as in the example above. The @noindent

Chapter 7: Quotations and Examples 69

command prevents a piece of text from being indented as if it were a new paragraph (see
Section 7.12 [@noindent], page 73).

If you wish to use the normal roman font for a code comment, you can use the @r

command (see Section 6.2.3 [Fonts], page 64).

You may optionally give arguments to the @example command, separated by commas
if there is more than one. In the HTML output, any such arguments are output as class
names, prefixed by the string ‘user-’. This may be useful for adding syntax highlighting to
manuals for code samples.

We recommend that when you give multiple arguments to @example, you use the first
argument to specify the language of the code (e.g. ‘C’, ‘lisp’, ‘Cplusplus’). You may find
uses for other arguments, such as providing a formatting hint or marking code samples for
extraction and further processing, but for now nothing definitive is recommended. Perhaps
this will change in future Texinfo releases.

Caution: Do not use tabs in the lines of an example! (Or anywhere else in
Texinfo, except in verbatim environments.) TEX treats tabs as single spaces,
and that is not what they look like.

7.5 @verbatim: Literal Text

Use the @verbatim environment for printing of text that may contain special characters or
commands that should not be interpreted, such as computer input or output (@example
interprets its text as regular Texinfo commands). This is especially useful for including
automatically generated files in a Texinfo manual.

In general, the output will be just the same as the input. No character substitutions are
made, e.g., all spaces and blank lines are significant, including tabs. The text is typeset in a
fixed-width font, and not indented or filled.

Write a @verbatim command at the beginning of a line by itself. This line will disappear
from the output. Mark the end of the verbatim block with an @end verbatim command,
also written at the beginning of a line by itself. The @end verbatim will also disappear from
the output.

For example:

@verbatim

{

<tab>@command with strange characters: @'e

expand<tab>me
}

@end verbatim

(where <tab> stands for a literal tab character). This produces:

{

@command with strange characters: @'e

expand me

}

Since the lines containing @verbatim and @end verbatim produce no output, typically
you should put a blank line before the @verbatim and another blank line after the @end

Chapter 7: Quotations and Examples 70

verbatim. Blank lines between the beginning @verbatim and the ending @end verbatim

will appear in the output.

You can get a “small” verbatim by enclosing the @verbatim in an @smallformat envi-
ronment, as shown here:

@smallformat

@verbatim

... still verbatim, but in a smaller font ...

@end verbatim

@end smallformat

Finally, a word of warning: it is not reliable to use @verbatim inside other Texinfo
constructs.

See also Section 17.3 [@verbatiminclude], page 156.

7.6 @lisp: Marking a Lisp Example

The @lisp command was used for Lisp code:

@lisp

Example lisp code

@end lisp

This is now synonymous with the following:

@example lisp

Example lisp code

@end example

Use @lisp to preserve information regarding the nature of the example. This is useful,
for example, if you write a function that evaluates only and all the Lisp code in a Texinfo
file. Then you can use the Texinfo file as a Lisp library.

7.7 @display: Examples Using the Text Font

The @display command begins another kind of environment, where the font is left unchanged,
not switched to typewriter as with @example. Each line of input still produces a line of
output, and the output is still indented.

This is an example of text written between a @display command
and an @end display command. The @display command
indents the text, but does not fill it.

7.8 @format: Examples Using the Full Line Width

The @format command is similar to @display, except it leaves the text unindented. Like
@display, it does not select the fixed-width font. Thus,

@format

This is an example of text written between a @code{@@format} command

and an @code{@@end format} command. As you can see

from this example,

the @code{@@format} command does not fill the text.

@end format

Chapter 7: Quotations and Examples 71

produces

This is an example of text written between a @format command
and an @end format command. As you can see
from this example,
the @format command does not fill the text.

7.9 @exdent: Undoing a Line’s Indentation

The @exdent command removes any indentation a line might have. The command is written
at the beginning of a line and applies only to the text that follows the command that is
on the same line. Do not use braces around the text. The text on an @exdent line is also
printed in the roman font where the output format allows this.

@exdent is usually used within examples. Thus,

@example

This line follows an @@example command.

@exdent This line is exdented.

This line follows the exdented line.

The @@end example comes on the next line.

@end example

produces

This line follows an @example command.

This line is exdented.
This line follows the exdented line.

The @end example comes on the next line.

In practice, the @exdent command is rarely used. Usually, you un-indent text by ending
the example and returning the page to its normal width.

@exdent does not have an effect in all output formats.

7.10 @flushleft and @flushright

The @flushleft and @flushright commands line up the ends of lines on the left and right
margins of a page, but do not fill the text. The commands are written on lines of their
own, without braces. The @flushleft and @flushright commands are ended by @end

flushleft and @end flushright commands on lines of their own.

Chapter 7: Quotations and Examples 72

For example,

@flushleft

This text is

written flushleft.

@end flushleft

produces

This text is
written flushleft.

@flushright produces the type of indentation often used in the return address of letters.
For example,

@flushright

Here is an example of text written

flushright. The @code{@flushright} command

right justifies every line but leaves the

left end ragged.

@end flushright

produces

Here is an example of text written
flushright. The @flushright command
right justifies every line but leaves the

left end ragged.

7.11 @raggedright: Ragged Right Text

The @raggedright fills text as usual, but the text is only justified on the left; the right
margin is ragged. The command is written on a line of its own, without braces. The
@raggedright command is ended by @end raggedright on a line of its own. This command
only has an effect in output formats where text is justified on the left, but not in output
formats where text is always set ragged right, such as Info or HTML.

The @raggedright command can be useful with paragraphs containing lists of commands
with long names, when it is known in advance that justifying the text on both margins will
make the paragraph look bad.

An example (from elsewhere in this manual):

@raggedright

Commands for double and single angle quotation marks:

@code{@@guillemetleft@{@}}, @code{@@guillemetright@{@}},

@code{@@guillemotleft@{@}}, @code{@@guillemotright@{@}},

@code{@@guilsinglleft@{@}}, @code{@@guilsinglright@{@}}.

@end raggedright

produces

Commands for double and single angle quotation marks: @guillemetleft{},
@guillemetright{}, @guillemotleft{}, @guillemotright{}, @guilsinglleft{},
@guilsinglright{}.

Chapter 7: Quotations and Examples 73

7.12 @noindent: Omitting Indentation

An example or other inclusion can break a paragraph into segments. Ordinarily, the
formatters indent text that follows an example as a new paragraph. You can prevent
this on a case-by-case basis by writing @noindent at the beginning of a line, preceding
the continuation text. You can also disable indentation for all paragraphs globally with
@paragraphindent (see Section E.3 [@paragraphindent], page 280).

Here is an example showing how to eliminate the normal indentation of the text after an
@example, a common situation:

@example

This is an example

@end example

@noindent

This line is not indented. As you can see, the

beginning of the line is fully flush left with the

line that follows after it.

produces:

This is an example

This line is not indented. As you can see, the
beginning of the line is fully flush left with the
line that follows after it.

The standard usage of @noindent is just as above: at the beginning of what would
otherwise be a paragraph, to eliminate the indentation that normally happens there. It can
either be followed by text or be on a line by itself. There is no reason to use it in other
contexts, such as in the middle of a paragraph or inside an environment (see Chapter 7
[Quotations and Examples], page 66).

You can control the number of blank lines in the Info file output by adjusting the input
as desired: a line containing just @noindent does not generate a blank line, and neither
does an @end line for an environment.

Do not put braces after a @noindent command; they are not used, since @noindent is a
command used outside of paragraphs (see Section A.1 [Command Syntax], page 217).

7.13 @indent: Forcing Indentation

To complement the @noindent command (see the previous section), Texinfo provides the
@indent command to force a paragraph to be indented. For instance, this paragraph (the
first in this section) is indented using an @indent command.

And indeed, the first paragraph of a section is the most likely place to use @indent, to
override the normal behavior of no indentation there (see Section E.3 [@paragraphindent],
page 280). It can either be followed by text or be on a line by itself.

As a special case, when @indent is used in an environment where text is not filled, it
produces a paragraph indentation space in the TEX output. (These environments are where

Chapter 7: Quotations and Examples 74

a line of input produces a line of output, such as @example and @display; for a summary
of all environments, see Section 7.1 [Block Enclosing Commands], page 66.)

Do not put braces after an @indent command; they are not used, since @indent is a
command used outside of paragraphs (see Section A.1 [Command Syntax], page 217).

7.14 @cartouche: Rounded Rectangles

Where the output format allows, the @cartouche command draws a box with rounded
corners around its contents. In HTML, a normal rectangle is drawn. You can use this
command to isolate a portion of the manual from the main flow. You can also further
highlight an example or quotation with @cartouche.

For instance, you could write a manual in which one type of example is surrounded by a
cartouche for emphasis. For example,

@cartouche

@example

% pwd

/usr/local/share/emacs

@end example

@end cartouche

surrounds the two-line example with a box with rounded corners, in the printed manual.

The output from the example looks like this (if you’re reading this in Info, you’ll see the
@cartouche had no effect):� �

% pwd

/usr/local/share/emacs
 	
@cartouche takes one optional argument, given on the remainder of the line. This text, if

present, is the cartouche title. It is output in bold or otherwise emphasized at the beginning
of the cartouche, and is centered in some output formats.

The following example illustrates a cartouche with a title:

@cartouche Important

Text explaining something important out of the main

flow of the text.

@end cartouche

The cartouche with a title looks like this:� �
Important

Text explaining something important out of the main flow of the text.
 	
A cartouche is output on a single page in printed output, similarly to @group (see

Section 12.9 [@group], page 116).

Chapter 7: Quotations and Examples 75

7.15 @small... Block Commands

In addition to the regular @example and similar commands, Texinfo has “small” example-
style commands. These are @smallquotation, @smallindentedblock, @smalldisplay,
@smallexample, @smallformat, and @smalllisp.

In most output formats, the @small... commands are equivalent to their non-small
companion commands.

In printed output, however, the @small... commands typeset text in a smaller font than
the non-small example commands. Thus, for instance, code examples can contain longer
lines and still fit on a page without needing to be rewritten.

Mark the end of a @small... block with a corresponding @end small.... For example,
pair @smallexample with @end smallexample.

Here is an example of the font used by the @smallexample command (in most output
formats, the output will be the same as usual):

... to make sure that you have the freedom to

distribute copies of free software (and charge for

this service if you wish), that you receive source

code or can get it if you want it, that you can

change the software or use pieces of it in new free

programs; and that you know you can do these things.

The @small... commands use the same font style as their normal counterparts:
@smallexample and @smalllisp use a fixed-width font, and everything else uses the
regular font. They also have the same behavior in other respects—whether filling is done
and whether margins are narrowed.

As a general rule, it’s better to just use the regular commands (such as @example instead
of @smallexample), unless you have a good reason for it.

76

8 Lists and Tables

Texinfo has several ways of making lists and tables. Lists can be bulleted or numbered;
two-column tables can highlight the items in the first column; multi-column tables are also
supported.

8.1 Introducing Lists

Texinfo automatically indents the text in lists or tables, and numbers an enumerated list.
This last feature is useful if you modify the list, since you do not need to renumber it yourself.

Numbered lists and tables begin with the appropriate @-command at the beginning of
a line, and end with the corresponding @end command on a line by itself. The table and
itemized-list commands also require that you write formatting information on the same line
as the beginning @-command.

Begin an enumerated list, for example, with an @enumerate command and end the list
with an @end enumerate command. Begin an itemized list with an @itemize command,
followed on the same line by a formatting command such as @bullet, and end the list with
an @end itemize command.

Precede each element of a list with an @item or @itemx command.

Here is an itemized list of the different kinds of table and lists:

• Itemized lists with and without bullets.

• Enumerated lists, using numbers or letters.

• Two-column tables with highlighting.

Here is an enumerated list with the same items:

1. Itemized lists with and without bullets.

2. Enumerated lists, using numbers or letters.

3. Two-column tables with highlighting.

And here is a two-column table with the same items and their @-commands:

@itemize Itemized lists with and without bullets.

@enumerate

Enumerated lists, using numbers or letters.

@table

@ftable

@vtable Two-column tables, optionally with indexing.

Chapter 8: Lists and Tables 77

8.2 @itemize: Making an Itemized List

The @itemize command produces a sequence of “items”, each starting with a bullet or
other mark inside the left margin, and generally indented.

Begin an itemized list by writing @itemize at the beginning of a line. Follow the
command, on the same line, with a character or a Texinfo command that generates a mark.
Usually, you will use @bullet after @itemize, but you can use @minus, or any command
or character that results in a single character in the Info file. (When you write the mark
command such as @bullet after an @itemize command, you may omit the ‘{}’.) If you
don’t specify a mark command, the default is @bullet. If you don’t want any mark at all,
but still want logical items, use @w{} (in this case the braces are required).

After the @itemize, write your items, each starting with @item. Text can follow on the
same line as the @item. The text of an item can continue for more than one paragraph.

There should be at least one @item inside the @itemize environment. If none are present,
texi2any gives a warning. If you just want indented text and not a list of items, use
@indentedblock; see Section 7.3 [@indentedblock], page 68.

Index entries and comments that are given before an @item including the first, are
automatically moved (internally) to after the @item, so the output is as expected. Historically
this has been a common practice.

Usually, you should put a blank line between items. This puts a blank line in the Info
file. (TEX inserts the proper vertical space in any case.) Except when the entries are very
brief, these blank lines make the list look better.

Here is an example of the use of @itemize, followed by the output it produces. @bullet
produces an ‘*’ in Info and a round dot in other output formats.

@itemize @bullet

@item

Some text for foo.

@item

Some text

for bar.

@end itemize

This produces:

• Some text for foo.

• Some text for bar.

Itemized lists may be embedded within other itemized lists. Here is a list marked with
dashes embedded in a list marked with bullets:

Chapter 8: Lists and Tables 78

@itemize @bullet

@item

First item.

@itemize @minus

@item

Inner item.

@item

Second inner item.

@end itemize

@item

Second outer item.

@end itemize

This produces:

• First item.

− Inner item.

− Second inner item.

• Second outer item.

8.3 @enumerate: Making a Numbered or Lettered List

@enumerate is like @itemize (see Section 8.2 [@itemize], page 77), except that the labels
on the items are successive integers or letters instead of bullets.

Write the @enumerate command at the beginning of a line. The command does not
require an argument, but accepts either a number or a letter as an option. Without an
argument, @enumerate starts the list with the number ‘1’. With a numeric argument, such
as ‘3’, the command starts the list with that number. With an upper- or lowercase letter,
such as ‘a’ or ‘A’, the command starts the list with that letter.

Write the text of the enumerated list in the same way as an itemized list: write a line
starting with @item at the beginning of each item in the enumeration. It is ok to have text
following the @item, and the text for an item can continue for several paragraphs.

You should put a blank line between entries in the list. This generally makes it easier to
read the Info file.

Here is an example of @enumerate without an argument:

@enumerate

@item

Underlying causes.

@item

Proximate causes.

@end enumerate

This produces:

1. Underlying causes.

Chapter 8: Lists and Tables 79

2. Proximate causes.

Here is an example with an argument of 3:

@enumerate 3

@item

Predisposing causes.

@item

Precipitating causes.

@item

Perpetuating causes.

@end enumerate

This produces:

3. Predisposing causes.

4. Precipitating causes.

5. Perpetuating causes.

Here is a summary:

a. @enumerate

Without an argument, produce a numbered list, with the first item numbered 1.

b. @enumerate unsigned-integer

With an (unsigned) numeric argument, start a numbered list with that number. You
can use this to continue a list that you interrupted with other text.

c. @enumerate upper-case-letter

With an uppercase letter as argument, start a list in which each item is marked by a
letter, beginning with that uppercase letter.

d. @enumerate lower-case-letter

With a lowercase letter as argument, start a list in which each item is marked by a
letter, beginning with that lowercase letter.

You can also nest enumerated lists, as in an outline.

8.4 Making a Two-column Table

@table is similar to @itemize (see Section 8.2 [@itemize], page 77), but allows you to specify
a name or heading line for each item. The @table command is used to produce two-column
tables, and is especially useful for glossaries, explanatory exhibits, and command-line option
summaries.

8.4.1 Using the @table Command

Use the @table command to produce a two-column table. This command is typically used
when you have a list of items and a brief text with each one, such as a list of definitions.

Chapter 8: Lists and Tables 80

Write the @table command at the beginning of a line, after a blank line, and follow it on
the same line with an argument that is an ‘indicating’ command, such as @code, @samp, @var,
@option, or @kbd (see Section 6.1 [Indicating], page 55). This command will be applied
to the text in the first column. For example, @table @code will cause the text in the first
column to be output as if it had been the argument to a @code command.

You may use the @asis command as an argument to @table. @asis is a command that
does nothing: if you use this command after @table, the first column entries are output
without added highlighting (“as is”).

The @table command works with other commands besides those explicitly mentioned
here. However, you can only use predefined Texinfo commands that take an argument in
braces. You cannot reliably use a new command defined with @macro, although an @alias

(for a suitable predefined command) is acceptable. See Chapter 16 [Defining New Texinfo
Commands], page 144.

Begin each table entry with an @item command at the beginning of a line. Write the
text for the first column on the same line as the @item command. Write the text for the
second column on the line following the @item line and on subsequent lines. You may write
as many lines of supporting text as you wish, even several paragraphs. But only the text on
the same line as the @item will be placed in the first column (including any footnotes). You
do not need to type anything for an empty second column.

Normally, you should put a blank line between table entries. This puts a blank line in
the Info file, which looks better unless the entries are very brief.

End the table with a line consisting of @end table. Follow the end of the table by a
blank line for consistent formatting across output formats.

For example, the following table highlights the text in the first column with the @samp
command:

@table @samp

@item foo

This is the text for

@samp{foo}.

@item bar

Text for @samp{bar}.

@end table

This produces:

‘foo’ This is the text for ‘foo’.

‘bar’ Text for ‘bar’.

If you want to list two or more named items with a single block of text, use the @itemx
command. (See Section 8.4.3 [@itemx], page 81.)

The @table command (see Section 8.4.1 [@table], page 79) is not supported inside
@display. Since @display is line-oriented, it doesn’t make sense to use them together.
If you want to indent a table, try @quotation (see Section 7.2 [@quotation], page 67) or
@indentedblock (see Section 7.3 [@indentedblock], page 68).

Chapter 8: Lists and Tables 81

8.4.2 @ftable and @vtable

The @ftable and @vtable commands are the same as the @table command except that
@ftable automatically enters each of the items in the first column of the table into the
index of functions and @vtable automatically enters each of the items in the first column
of the table into the index of variables. This simplifies the task of creating indices. Only
the items on the same line as the @item or @itemx commands are indexed, and they are
indexed in exactly the form that they appear on that line. See Chapter 10 [Indices], page 91,
for more information about indices.

Begin a two-column table using @ftable or @vtable by writing the @-command at the
beginning of a line, followed on the same line by an argument that is a Texinfo command
such as @code, exactly as you would for a @table command; and end the table with an
@end ftable or @end vtable command on a line by itself.

See the example for @table in the previous section.

8.4.3 @itemx: Second and Subsequent Items

Use the @itemx command inside a table when you have two or more first column entries for
the same item, each of which should appear on a line of its own.

Use @item for the first entry, and @itemx for all subsequent entries; @itemx must always
follow an @item command, with no blank line intervening.

The @itemx command works exactly like @item except that it does not generate extra
vertical space above the first column text in some output formats. If you have multiple
consecutive @itemx commands, do not insert any blank lines between them.

For example,

@table @code

@item upcase

@itemx downcase

These two functions accept a character or a string as

argument, and return the corresponding uppercase (lowercase)

character or string.

@end table

This produces:

upcase

downcase These two functions accept a character or a string as argument, and return the
corresponding uppercase (lowercase) character or string.

(Note also that this example illustrates multi-line supporting text in a two-column table.)

8.5 @multitable: Multi-column Tables

@multitable allows you to construct tables with any number of columns, with each column
having any width you like.

You define the column widths on the @multitable line itself, and write each row of the
actual table following an @item command, with columns separated by a @tab command.
Finally, @end multitable completes the table. Details in the sections below.

Chapter 8: Lists and Tables 82

8.5.1 Multitable Column Widths

You can define the column widths for a multitable in two ways: as fractions of the line
length; or with a prototype row. Mixing the two methods is not supported. In either case,
the widths are defined entirely on the same line as the @multitable command.

1. To specify column widths as fractions of the line length, write @columnfractions and
the decimal numbers (presumably less than 1; a leading zero is allowed and ignored)
after the @multitable command, as in:

@multitable @columnfractions .33 .33 .33

The fractions need not add up exactly to 1.0, as these do not. This allows you to
produce tables that do not need the full line length.

When using @columnfractions, the leftmost column may appear slightly wider than
you might expect, relative to the other columns. This is due to spacing between columns
being included in the width of the other columns.

2. To specify a prototype row, write the longest entry for each column enclosed in braces
after the @multitable command. For example:

@multitable {some text for column one} {for column two}

The first column will then have the width of the typeset ‘some text for column one’,
and the second column the width of ‘for column two’.

The prototype entries need not appear in the table itself.

Although we used simple text in this example, the prototype entries can contain Texinfo
commands; markup commands such as @code are particularly likely to be useful.

Prototype rows have no effect in HTML output.

8.5.2 Multitable Rows

After the @multitable command defining the column widths (see the previous section), you
begin each row in the body of a multitable with @item, and separate the column entries
with @tab. Line breaks are not special within the table body, and you may break input lines
in your source file as necessary.

You can also use @headitem instead of @item to produce a heading row. The TEX output
for such a row is in bold, and the HTML and DocBook output uses the <thead> tag. In
Info, the heading row is followed by a separator line made of dashes (‘-’ characters).

The command @headitemfont can be used in templates when the entries in a @headitem

row need to be used in a template. It is a synonym for @b, but using @headitemfont avoids
any dependency on that particular font style, in case we provide a way to change it in the
future.

Here is a complete example of a multi-column table (the text is from The GNU Emacs
Manual, see Section “Splitting Windows” in The GNU Emacs Manual):

@multitable @columnfractions .15 .45 .4

@headitem Key @tab Command @tab Description

@item C-x 2

@tab @code{split-window-vertically}

@tab Split the selected window into two windows,

with one above the other.

Chapter 8: Lists and Tables 83

@item C-x 3

@tab @code{split-window-horizontally}

@tab Split the selected window into two windows

positioned side by side.

@item C-Mouse-2

@tab

@tab In the mode line or scroll bar of a window,

split that window.

@end multitable

produces:

Key Command Description
C-x 2 split-window-vertically Split the selected window into two

windows, with one above the other.

C-x 3 split-window-horizontally Split the selected window into two
windows positioned side by side.

C-Mouse-2 In the mode line or scroll bar of a
window, split that window.

84

9 Special Displays

The commands in this chapter allow you to write text that is specially displayed (output
format permitting), outside of the normal document flow.

One set of such commands is for creating “floats”, that is, figures, tables, and the like,
set off from the main text, possibly numbered, captioned, and/or referred to from elsewhere
in the document. Images are often included in these displays.

Another group of commands is for creating footnotes in Texinfo.

9.1 Floats

A float is a display which is set off from the main text. It is typically labeled as being a
“Figure”, “Table”, “Example”, or some similar type.

A float is so-named because, in principle, it can be moved to the bottom or top of the
current page, or to a following page, in the printed output. (Floating does not make sense
in other output formats.) In every output format except for LATEX, however, this floating is
unfortunately not yet implemented. Instead, the floating material is simply output at the
current location, more or less as if it were an @group (see Section 12.9 [@group], page 116).

9.1.1 @float [type][,label]: Floating Material

To produce floating material, enclose the material you want to be displayed separate between
@float and @end float commands, on lines by themselves.

Floating material often uses @image to display an already-existing graphic (see Section 9.2
[Images], page 86), or @multitable to display a table (see Section 8.5 [Multi-column Tables],
page 81). However, the contents of the float can be anything. Here’s an example with simple
text:

@float Figure,fig:ex1

This is an example float.

@end float

And the output:

This is an example float.

Figure 9.1

As shown in the example, @float takes two arguments (separated by a comma), type
and label. Both are optional.

type Specifies the sort of float this is; typically a word such as “Figure”, “Table”, etc.
If this is not given, and label is, any cross-referencing will simply use a bare
number.

label Specifies a cross-reference label for this float. If given, this float is automatically
given a number, and will appear in any @listoffloats output (see Section 9.1.3
[@listoffloats], page 86). Cross references to label are allowed. For example,
‘see @ref{fig:ex1}’ will produce see Figure 9.1.

On the other hand, if label is not given, then the float will not be numbered
and consequently will not appear in the @listoffloats output or be cross-
referenceable.

Chapter 9: Special Displays 85

Ordinarily, you specify both type and label, to get a labeled and numbered float.

In the LATEX output, code loading the float package is output in the preamble if @float
are present. A @float with type ‘figure’ or ‘table’ (case insensitive) is already defined by
the package. Other float types lead to the definition of a new float environment, with names
based on the @float type with anything else than letters and ‘-’ removed.

In Texinfo, all floats are numbered in the same way: with the chapter number (or
appendix letter), a period, and the float number, which simply counts 1, 2, 3, . . . , and is
reset at each chapter. Each float type is counted independently.

Floats within an @unnumbered, or outside of any chapter, are simply numbered consecu-
tively from 1.

These numbering conventions are not, at present, changeable.

9.1.2 @caption & @shortcaption

You may write a @caption anywhere within a @float environment, to define a caption for
the float. It is not allowed in any other context. @caption takes a single argument, enclosed
in braces. Here’s an example:

@float

An example float, with caption.

@caption{Caption for example float.}

@end float

The output is:

An example float, with caption.

Caption for example float.

@caption can appear anywhere within the float; it is not processed until the @end float.
The caption text is usually a sentence or two, but may consist of several paragraphs if
necessary.

In the output, the caption always appears below the float; this is not currently changeable.
It is preceded by the float type and/or number, as specified to the @float command (see
the previous section).

The @shortcaption command likewise may be used only within @float, and takes a
single argument in braces. The short caption text is used instead of the caption text in a list
of floats (see the next section). Thus, you can write a long caption for the main document,
and a short title to appear in the list of floats. For example:

@float

... as above ...

@shortcaption{Text for list of floats.}

@end float

The text for @shortcaption may not contain comments (@c), verbatim text (@verb),
environments such as @example, footnotes (@footnote), multiple paragraphs, or other com-
plex constructs. The same constraints apply to @caption unless there is a @shortcaption.
In LATEX a multi-paragraph @caption will lead to an error when formatted, unless there is
a @shortcaption.

Chapter 9: Special Displays 86

9.1.3 @listoffloats: Tables of Contents for Floats

You can write a @listoffloats command to generate a list of floats for a given float type
(see Section 9.1.1 [@float], page 84), analogous to the document’s overall table of contents.
Typically, it is written in its own @unnumbered node to provide a heading and structure,
rather like @printindex (see Section 10.5 [Printing Indices & Menus], page 94).

@listoffloats takes one optional argument, the float type. Here’s an example:

@node List of Figures

@unnumbered List of Figures

@listoffloats Figure

Without any argument, @listoffloats generates a list of floats for which no float type
was specified, i.e., no first argument to the @float command (see Section 9.1.1 [@float],
page 84).

Here’s what the output from @listoffloats looks like, given the example figure earlier
in this chapter:

Figure 9.1: . 84

Usually, each line in the list of floats contains the float type (if any), the float number,
and the caption, if any—the @shortcaption argument, if it was specified, else the @caption
argument. The page number may also be included, depending on output format.

Unnumbered floats (those without cross-reference labels) are omitted from the list of
floats.

The formatting of @listoffloats depends on the output format. In Info, for example,
a @listoffloats is formatted as a menu.

In LATEX output, \listoffigures is output for the ‘figure’ (case insensitive) float type,
\listoftables is output for the ‘table’ (case insensitive) float type. For other float types,
a specific \listof command is output.

9.2 Inserting Images

You can insert an image given in an external file with the @image command. Although
images can be used anywhere, including the middle of a paragraph, we describe them in this
chapter since they are most often part of a displayed figure or example.

9.2.1 Image Syntax

Here is the synopsis of the @image command:

@image{filename[, width[, height[, alttext[, extension]]]]}

The filename argument is mandatory, and must not have an extension, because the
different processors support different formats:

• TEX (DVI output) reads the file filename.eps (Encapsulated PostScript format).

• TEX (PDF output) reads filename.pdf, filename.png, filename.jpg, or filename.jpeg
(in that order). It also tries uppercase versions of the extensions. The PDF format does
not support EPS images, so such must be converted first.

• In Info, filename.txt is included verbatim (more or less as if it were in @verbatim).
The Info output may also include a reference to filename.png or filename.jpg. (See
below.)

Chapter 9: Special Displays 87

• In HTML, a reference to filename.png, filename.jpg, filename.jpeg or filename.gif
(in that order) is output. If none of those exist, it gives an error, and outputs a reference
to filename.jpg anyway.

• In DocBook, references to filename.eps, filename.gif, filename.jpeg, filename.jpg,
filename.pdf, filename.png and filename.svg are output, for every file found. Also,
filename.txt is included verbatim, if present. (The subsequent DocBook processor is
supposed to choose the appropriate one.)

• For LATEX, filename without any extension is used; the subsequent LATEX processor is
supposed to choose the appropriate image type.

• For Info and HTML output, the optional fifth argument extension to @image is used
for the file extension, if it is specified and the file is found. Any leading period should
be included in extension. For example:

@image{foo,,,,.xpm}

If you want to install image files for use by Info readers too, we recommend putting them in
a subdirectory like ‘foo-figures’ for a package foo. Copying the files into $(infodir)/foo-
figures/ should be done in your Makefile.

The width and height arguments are described in the next section.

If an image is the first thing in a paragraph and followed by more text, then you should
precede the @image command with @indent or @noindent to indicate the beginning of
paragraph formatting. This is especially important for TEX output to get correct paragraph
indentation.

Use @center to center an image (see Section 2.8.3 [@titlefont @center @sp], page 20).

For HTML output, the alt attribute for inline images is set to the optional alttext (fourth)
argument to @image, if supplied. If not supplied, the full file name of the image being
displayed is used. The alttext is processed as Texinfo text, so special characters such as ‘"’
and ‘<’ and ‘&’ are escaped in the HTML output; also, you can get an empty alt string with
@- (a command that produces no output; see Section 12.3 [@- @hyphenation], page 115).

For Info output, the alttext string is also processed as Texinfo text and output. In this
case, ‘\’ is escaped as ‘\\’ and ‘"’ as ‘\"’; no other escapes are done.

In Info output, a reference to the binary image file is written (trying filename suffixed
with extension, .extension, .png, or .jpg, in that order) if one exists. The .txt file is also
literally included, if one exists. This way, Info readers which can display images (such as the
Emacs Info browser, running under X) can do so, whereas Info readers which can only use
text (such as the standalone Info reader) can display the textual version.

9.2.2 Image Scaling

The optional width and height arguments to the @image command (see the previous section)
specify the size to which to scale the image. They are only taken into account in printed
output.

In TEX, if neither is specified, the image is presented in its natural size (given in the file);
if only one is specified, the other is scaled proportionately; and if both are specified, both
are respected, thus likely distorting the original image by changing its aspect ratio.

The width and height may be specified using any valid TEX dimension, namely:

pt point (72.27pt = 1in)

Chapter 9: Special Displays 88

pc pica (1pc = 12pt)

bp big point (72bp = 1in)

in inch

cm centimeter (2.54cm = 1in)

mm millimeter (10mm = 1cm)

dd didôt point (1157dd = 1238pt)

cc cicero (1cc = 12dd)

sp scaled point (65536sp = 1pt)

For example, the following will scale a file ridt.eps to one inch vertically, with the width
scaled proportionately:

@image{ridt,,1in}

For @image to work with TEX, the file epsf.tex must be installed somewhere that TEX
can find it. (The standard location is texmf /tex/generic/dvips/epsf.tex, where texmf
is a root of your TEX directory tree.) This file is included in the Texinfo distribution and is
also available from ftp://tug.org/tex/epsf.tex, among other places.

@image can be used within a line as well as for displayed figures. Therefore, if you intend
it to be displayed, be sure to leave a blank line before the command, or the output will run
into the preceding text.

Image scaling is presently implemented only in printed output, not in any other sort of
output.

9.3 Footnotes

A footnote is for a reference that documents or elucidates the primary text.1

Footnotes are distracting; use them sparingly at most, and it is best to avoid them
completely. Standard bibliographical references are usually better placed in a bibliography
at the end of a document instead of in footnotes throughout.

9.3.1 Footnote Commands

In Texinfo, footnotes are created with the @footnote command. This command is followed
immediately by a left brace, then by the text of the footnote, and then by a terminating
right brace. Footnotes may be of any length (they will be broken across pages if necessary),
but are usually short. The template is:

ordinary text@footnote{text of footnote}

As shown here, the @footnote command should come right after the text being footnoted,
with no intervening space; otherwise, the footnote marker might end up starting a line.

For example, this clause is followed by a sample footnote2; in the Texinfo source, it looks
like this:

...a sample footnote@footnote{Here is the sample

1 A footnote should complement or expand upon the primary text, but a reader should not need to read
a footnote to understand the primary text. For a thorough discussion of footnotes, see The Chicago
Manual of Style, which is published by the University of Chicago Press.

2 Here is the sample footnote.

ftp://tug.org/tex/epsf.tex

Chapter 9: Special Displays 89

footnote.}; in the Texinfo source...

As you can see, this source includes two punctuation marks next to each other; in this
case, ‘.};’ is the sequence. This is normal (the first ends the footnote and the second
belongs to the sentence being footnoted), so don’t worry that it looks odd. (Another style,
perfectly acceptable, is to put the footnote after punctuation belonging to the sentence, as
in ‘;@footnote{...’.)

In printed output formats, the reference mark for a footnote is a small, superscripted
number; the text of the footnote appears at the bottom of the page, below a horizontal line.

In Info, the reference mark for a footnote is a pair of parentheses with the footnote
number between them, like this: ‘(1)’. The reference mark is followed by a cross-reference
link to the footnote text if footnotes are put in separate nodes (see Section 9.3.2 [Footnote
Styles], page 89).

In the HTML output, footnote references are generally marked with a small, superscripted
number which is rendered as a hypertext link to the footnote text.

Footnotes cannot be nested, and cannot appear in section headings of any kind or other
“unusual” places.

A final tip: footnotes in the argument of an @item command for an @table must be
entirely on the same line as the @item (as usual). See Section 8.4 [Two-column Tables],
page 79.

9.3.2 Footnote Styles

Online formats have two footnote styles, which determine where the text of the footnote is
located, the ‘end’ and ‘separate’ footnote style.

‘end’ For Info, in the ‘end’ node style, all the footnotes for a single node are placed
at the end of that node. The footnotes are separated from the rest of the node
by a line of dashes with the word ‘Footnotes’ within it. Each footnote begins
with an ‘(n)’ reference mark.

Here is an example of the Info output for a single footnote in the end-of-node
style:

--------- Footnotes ---------

(1) Here is a sample footnote.

In HTML, when the footnote style is ‘end’, or if the output is not split, footnotes
are put at the end of each output file.

‘separate’
For Info, in the ‘separate’ node style, all the footnotes for a single node are
placed in an automatically constructed node of their own. In this style, a
“footnote reference” follows each ‘(n)’ reference mark in the body of the node.
The footnote reference is actually a cross-reference which you use to reach the
footnote node.

The name of the node with the footnotes is constructed by appending
‘-Footnotes’ to the name of the node that contains the footnotes. (Consequently,
the footnotes’ node for the Footnotes node is Footnotes-Footnotes!) The
footnotes’ node has an ‘Up’ node pointer that leads back to its parent node.

Chapter 9: Special Displays 90

Here is how the first footnote in this manual looks after being formatted for
Info in the separate node style:

File: texinfo.info Node: Overview-Footnotes, Up: Overview

(1) The first syllable of "Texinfo" is pronounced like

"speck", not "hex". ...

In HTML, when the footnote style is ‘separate’, and the output is split, foot-
notes are placed in a separate file.

Unless your document has long and important footnotes (as in, say, Gibbon’s Decline
and Fall . . .), we recommend the ‘end’ style, as it is simpler for readers to follow.

Use the @footnotestyle command to specify the footnote style. Write this command
at the beginning of a line followed by an argument, either ‘end’ for the end node style or
‘separate’ for the separate node style.

For example,

@footnotestyle end

or

@footnotestyle separate

Write a @footnotestyle command in the Texinfo file preamble.

91

10 Indices

Using Texinfo, you can generate indices without having to sort and collate entries manually.
In an index, the entries are listed in alphabetical order, together with information on how
to find the discussion of each entry. In a printed manual, this information consists of page
numbers. In other formats, links to the index entries location or to the associated nodes are
generated.

Texinfo provides several predefined kinds of indices: an index for functions, an index for
variables, an index for concepts, and so on. You can combine indices or use them for other
than their canonical purpose. Lastly, you can define your own new indices.

10.1 Predefined Indices

Texinfo provides six predefined indices. Here are their nominal meanings, abbreviations, and
the corresponding index entry commands:

‘cp’ (@cindex) Concept index, for general concepts.

‘fn’ (@findex) Function index, for function and function-like names (such as entry
points of libraries).

‘ky’ (@kindex) Keystroke index, for keyboard commands.

‘pg’ (@pindex) Program index, for names of programs.

‘tp’ (@tindex) Data type index, for type names (such as structures defined in header
files).

‘vr’ (@vindex) Variable index, for variable names (such as library global variables).

Not every manual needs all of these, and most manuals use only two or three at most. The
present manual, for example, has two indices: a concept index and an @-command index.
(The latter is actually the function index but is called a command index in the chapter
heading.)

You are not required to use the predefined indices strictly for their canonical purposes.
For example, suppose you wish to index some C preprocessor macros. You could put them
in the function index along with actual functions, just by writing @findex commands for
them; then, when you print the “Function Index” as an unnumbered chapter, you could give
it the title ‘Function and Macro Index’ and all will be consistent for the reader.

On the other hand, it is best not to stray too far from the meaning of the predefined
indices. Otherwise, in the event that your text is combined with other text from other
manuals, the index entries will not match up. Instead, define your own new index (see
Section 10.7 [New Indices], page 96).

We recommend having a single index in the final document whenever possible, however
many source indices you use, since then readers have only one place to look. Two or
more source indices can be combined into one output index by using the @synindex or
@syncodeindex commands (see Section 10.6 [Combining Indices], page 95).

Index entry commands based on the the two letter index names are also valid, for example
@cpindex can be used instead of @cindex.

Chapter 10: Indices 92

10.2 Defining the Entries of an Index

The data to make an index come from many individual indexing commands scattered
throughout the Texinfo source file. Each command says to add one entry to a particular
index; after formatting, the index will give the current page number or node name as the
reference.

An index entry consists of an indexing command at the beginning of a line followed, on
the rest of the line, by the entry.

For example, this section begins with the following five entries for the concept index:

@cindex Defining indexing entries

@cindex Index entries, defining

@cindex Entries for an index

@cindex Specifying index entries

@cindex Creating index entries

Each predefined index has its own indexing command—@cindex for the concept index,
@findex for the function index, and so on, as listed in the previous section.

Index entries should precede the visible material that is being indexed. For instance:

@cindex hello

Hello, there!

Among other reasons, that way following indexing links (in whatever context) ends up before
the material, where readers want to be, instead of after.

In Info, an index is usually formatted as a menu. Try to avoid using a colon in index
entries, as this may confuse some Info readers. See Section 3.9.4 [Menu Parts], page 36, for
more information about the structure of a menu entry.

By default, entries for a concept index are printed in a roman font and entries for the
other indices are printed in a typewriter font. You may change the way part of an entry
is printed with the usual Texinfo commands, such as @file for file names (see Chapter 6
[Marking Text], page 55), and @r for the normal roman font (see Section 6.2.3 [Fonts],
page 64).

You may specify an explicit sort key for an index entry using @sortas following either the
index command or the text of the entry. For example: ‘@findex @sortas{\} \ @r{(literal

\ in @code{@@math})’ sorts the index entry this produces under backslash.

You may choose to ignore certain characters in index entries for the purposes of
sorting. The characters that you can currently choose to ignore are ‘\’, ‘-’, ‘<’ and
‘@’, which are ignored by giving as an argument to the @set command, respectively,
txiindexbackslashignore, txiindexhyphenignore, txiindexlessthanignore and
txiindexatsignignore. For example, specifying ‘@set txiindexbackslashignore’ causes
the ‘\mathopsup’ entry in the index for this manual to be sorted as if it were ‘mathopsup’,
so that it appears among the other entries beginning with ‘M’. This avoids the need to
provide explicit sort keys for index entries containing these characters.

When using these options, it is possible to get an index entry with an empty sort key.
To avoid this, specify a @sortas directive in the index entry. For example:

@set txiindexbackslashignore

@findex @sortas{\} \

Chapter 10: Indices 93

10.3 Advanced Indexing Commands

Texinfo provides several further commands for indexing.

First, you can create multilevel index entries, allowing you to group many related
subtopics under the same higher-level topic. You do this by separating the parts of such an
entry with the @subentry command. Such commands might look like this:

@cindex Superhumans @subentry villains

@cindex Superhumans @subentry heroes

You may have up to three levels in an entry:

@cindex coffee makers @subentry electric @subentry pink

@cindex coffee makers @subentry electric @subentry blue

You can use the @sortas command mentioned earlier with any or all of the three parts
of an entry to cause them to sort differently than they would by default.

Second, you may provide an index entry that points to another, using the @seeentry

(“see entry”) command. For example:

@cindex Indexes @seeentry{Indices}

Such an entry should be unique in your document; the idea is to redirect the reader to
the other entry where they will find all the information they are looking for.

Finally, you may provide a “see also” entry using the @seealso command. These entries
go along with regular entries, and are grouped together with them in the final printed index.
For example:

@cindex Coffee

@cindex Coffee @subentry With milk and sugar

@cindex Coffee @subentry With doughnuts

@cindex Coffee @subentry Decaffeinated

@cindex Coffee @seealso{Tea}

When using all three of these advanced commands, do not place a comma between the
different parts of the index text. The texindex program, which sorts the index entries and
generates the indexing formatting commands, takes care of placing commas in the correct
places for you.

Do not interrupt an index or @subentry entry by @sortas or advanced commands with
braces; place the commands with braces at the beginning or at the end of the entry.

These features are the most useful with printed documents, and when translating Texinfo
to DocBook.

10.4 Making Index Entries

Concept index entries consist of text. The best way to write an index is to devise entries
which are terse yet clear. If you can do this, the index usually looks better if the entries
are written just as they would appear in the middle of a sentence, that is, capitalizing
only proper names and acronyms that always call for uppercase letters. This is the case
convention we use in most GNU manuals’ indices.

If you don’t see how to make an entry terse yet clear, make it longer and clear—not
terse and confusing. If many of the entries are several words long, the index may look better

Chapter 10: Indices 94

if you use a different convention: capitalize the first word of each entry. Whichever case
convention you use, use it consistently.

In any event, do not ever capitalize a case-sensitive name such as a C or Lisp function
name or a shell command; that would be a spelling error. Entries in indices other than the
concept index are symbol names in programming languages, or program names; these names
are usually case-sensitive, so likewise use upper- and lowercase as required.

It is a good idea to make index entries unique wherever feasible. That way, people using
the printed output or online completion of index entries don’t see undifferentiated lists.
Consider this an opportunity to make otherwise-identical index entries be more specific, so
readers can more easily find the exact place they are looking for. The advanced indexing
features described in Section 10.3 [Advanced Indexing], page 93, can help with this, as well.

When you are making index entries, it is good practice to think of the different ways
people may look for something. Different people do not think of the same words when they
look something up. A helpful index will have items indexed under all the different words
that people may use. For example, one reader may think it obvious that the two-letter
names for indices should be listed under “Indices, two-letter names”, since “Indices” are the
general concept. But another reader may remember the specific concept of two-letter names
and search for the entry listed as “Two letter names for indices”. A good index will have
both entries and will help both readers.

Like typesetting, the construction of an index is a skilled art, the subtleties of which may
not be appreciated until you need to do it yourself.

10.5 Printing Indices and Menus

@printindex takes one argument, a two-letter index abbreviation. You must include the
@printindex command at the place in the document where you want the index to appear.
This does not happen automatically just because you use @cindex or other index-entry
generating commands in the Texinfo file; those just cause the raw data for the index to be
accumulated.

You should precede the @printindex command with a suitable section or chapter
command (usually @appendix or @unnumbered) to supply the chapter heading and put
the index into the table of contents. Precede the chapter heading with an @node line as
usual.

For example:

@node Variable Index

@unnumbered Variable Index

@printindex vr

@node Concept Index

@unnumbered Concept Index

@printindex cp

The text ‘Index’ needs to appear in the name of the node containing the index for the
index to be found by Info readers.

Chapter 10: Indices 95

If you have more than one index, we recommend placing the concept index last.

Other details of index output in output formats:

• As part of the process of creating a printed manual with TEX, you run a program called
texindex (see Chapter 18 [Hardcopy with TEX], page 157) to sort the raw data to
produce a sorted index file. The sorted index file is what is actually used to print the
index.

@printindex reads the corresponding sorted index file and produces a traditional
two-column index, with index terms and page numbers.

• In Info output, @printindex produces a special menu containing the line number of
the entry, relative to the start of the node. Info readers can use this to go to the exact
line of an entry, not just the containing node. (Older Info readers will just go to the
node.) Here’s an example:

* First index entry: Top. (line 7)

• In plain text output, @printindex formatting is usually similar to a menu in Info,
showing the line number of each entry relative to the start of the file.

• In HTML output, @printindex produces links to the index entries.

• In DocBook and LATEX output, it simply records the index to be printed.

10.6 Combining Indices

Sometimes you will want to combine two disparate indices such as functions and concepts,
perhaps because you have few enough entries that a separate index would look silly.

You could put functions into the concept index by writing @cindex commands for them
instead of @findex commands, and produce a consistent manual by printing the concept
index with the title ‘Function and Concept Index’ and not printing the ‘Function Index’ at
all; but this is not a robust procedure. It works only if your document is never included
as part of another document that is designed to have a separate function index; if your
document were to be included with such a document, the functions from your document
and those from the other would not end up together. Also, to make your function names
appear in the right font in the concept index, you would need to enclose every one of them
between the braces of @code.

10.6.1 @syncodeindex: Combining Indices Using @code

When you want to combine functions and concepts into one index, you should index the
functions with @findex and index the concepts with @cindex, and use the @syncodeindex
command to redirect the function index entries into the concept index.

The @syncodeindex command takes two arguments; they are the name of the index to
redirect, and the name of the index to redirect it to. The template looks like this:

@syncodeindex from to

For this purpose, the indices are given two-letter names:

‘cp’ Concept index

‘fn’ Function index

‘ky’ Key index

Chapter 10: Indices 96

‘pg’ Program index

‘tp’ Data type index

‘vr’ Variable index

Write a @syncodeindex command before or shortly after the end-of-header line at the
beginning of a Texinfo file. For example, to merge a function index with a concept index,
write the following:

@syncodeindex fn cp

This causes all entries designated for the function index to merge in with the concept index
instead.

To merge both a variable index and a function index into a concept index, write the
following:

@syncodeindex vr cp

@syncodeindex fn cp

The @syncodeindex command puts all the entries from the ‘from’ index (the redirected
index) into the @code font, overriding whatever default font is used by the index to which
the entries are now directed. This way, if you direct function names from a function index
into a concept index, all the function names are printed in the @code font as you would
expect.

10.6.2 @synindex: Combining Indices

The @synindex command is nearly the same as the @syncodeindex command, except that
it does not put the ‘from’ index entries into the @code font; rather it puts them in the roman
font. Thus, you use @synindex when you merge a concept index into a function index.

See Section 10.5 [Printing Indices & Menus], page 94, for information about printing an
index at the end of a book or creating an index menu in an Info file.

10.7 Defining New Indices

In addition to the predefined indices (see Section 10.1 [Predefined Indices], page 91), you may
use the @defindex and @defcodeindex commands to define new indices. These commands
create new indexing @-commands with which you mark index entries. The @defindex

command is used like this:

@defindex name

New index names are usually two-letter words, such as ‘au’. For example:

@defindex au

This defines a new index, called the ‘au’ index. At the same time, it creates a new
indexing command, @auindex, that you can use to make index entries. Use this new indexing
command just as you would use a predefined indexing command.

For example, here is a section heading followed by a concept index entry and two ‘au’
index entries.

@section Cognitive Semantics

@cindex kinesthetic image schemas

@auindex Johnson, Mark

Chapter 10: Indices 97

@auindex Lakoff, George

(Evidently, ‘au’ serves here as an abbreviation for “author”.)

Texinfo constructs the new indexing command by concatenating the name of the index
with ‘index’; thus, defining an ‘xy’ index leads to the automatic creation of an @xyindex

command.

Use the @printindex command to print the index, as you do with the predefined indices.
For example:

@node Author Index

@unnumbered Author Index

@printindex au

The @defcodeindex command is like the @defindex command, except that, in the
printed output, it prints entries in an @code font by default instead of in a roman font.

You should define new indices before the end-of-header line of a Texinfo file, and (of
course) before any @synindex or @syncodeindex commands (see Section 2.5 [Texinfo File
Header], page 12).

As mentioned earlier (see Section 10.1 [Predefined Indices], page 91), we recommend
having a single index in the final document whenever possible (no matter how many source
indices you use), since then readers have only one place to look.

When creating an index, TEX creates a file whose extension is the name of the index (see
[Names of index files], page 159). Therefore you should avoid using index names that collide
with extensions used for other purposes, such as ‘.aux’ or ‘.xml’. texi2any already reports
an error if a new index conflicts well-known extension name.

98

11 Special Insertions

Texinfo provides several commands for inserting characters that have special meaning in
Texinfo, such as braces, and for other graphic elements that do not correspond to simple
characters you can type.

11.1 Special Characters: Inserting @ {} , \ # &

‘@’ and curly braces are the basic special characters in Texinfo. To insert these characters so
they appear in text, you must put an ‘@’ in front of these characters to prevent Texinfo from
misinterpreting them. Alphabetic commands are also provided.

The other characters (comma, backslash, hash, ampersand) are special only in restricted
contexts, as explained in the respective sections.

11.1.1 Inserting ‘@’ with @@ and @atchar{}

@@ produces a single ‘@’ character in the output. Do not put braces after an @@ command.

@atchar{} also produces a single ‘@’ character in the output. It does need following
braces, as usual for alphabetic commands. In inline conditionals (see Section 15.4 [Inline
Conditionals], page 137), it can be necessary to avoid using the literal ‘@’ character in the
source (and may be clearer in other contexts).

11.1.2 Inserting ‘{ ‘}’ with @{ @} and @l rbracechar{}

@{ produces a single ‘{’ in the output, and @} produces a single ‘}’. Do not put braces after
either an @{ or an @} command.

@lbracechar{} and @rbracechar{} also produce single ‘{’ and ‘}’ characters in the
output. They do need following braces, as usual for alphabetic commands. In inline
conditionals (see Section 15.4 [Inline Conditionals], page 137), it can be necessary to avoid
using literal brace characters in the source (and may be clearer in other contexts).

11.1.3 Inserting ‘,’ with @comma{}

Ordinarily, a comma ‘,’ is a normal character that can be simply typed in your input where
you need it.

However, Texinfo uses the comma as a special character only in one context: to sep-
arate arguments to those Texinfo commands, such as @node (see Section 3.3 [Node Line
Requirements], page 29), @acronym (see Section 6.1.14 [@acronym], page 62) and @xref (see
Chapter 5 [Cross References], page 44), as well as user-defined macros (see Section 16.1
[Defining Macros], page 144), which take more than one argument.

Since a comma character would confuse Texinfo’s parsing for these commands, you must
use the command ‘@comma{}’ instead if you want to pass an actual comma. Here are some
examples:

@acronym{ABC, A Bizarre @comma{}}

@xref{Comma,, The @comma{} symbol}

@mymac{One argument@comma{} containing a comma}

Although ‘@comma{}’ can be used nearly anywhere, there is no need for it anywhere
except in this unusual case.

Chapter 11: Special Insertions 99

(Incidentally, the name ‘@comma’ lacks the ‘char’ suffix used in its companion commands
only for historical reasons. It didn’t seem important enough to define a synonym.)

11.1.4 Inserting ‘\’ with @backslashchar{}

Ordinarily, a backslash ‘\’ is a normal character in Texinfo that can be simply typed in your
input where you need it. The result is to typeset the backslash from the typewriter font.

However, Texinfo uses the backslash as a special character in one restricted context: to
delimit formal arguments in the bodies of user-defined macros (see Section 16.1 [Defining
Macros], page 144).

Due to the vagaries of macro argument parsing, it is more reliable to pass an alphabetic
command that produces a backslash instead of using a literal \. Hence @backslashchar{}.
Here is an example macro call:

@mymac{One argument@backslashchar{} with a backslash}

Texinfo documents may also use \ as a command character inside @math (see Section 11.7
[Inserting Math], page 106). In this case, @\ or \backslash produce a “math” backslash
(from the math symbol font), while @backslashchar{} produces a typewriter backslash as
usual.

Although ‘@backslashchar{}’ can be used nearly anywhere, there is no need for it except
in these unusual cases.

11.1.5 Inserting ‘#’ with @hashchar{}

Ordinarily, a hash ‘#’ is a normal character in Texinfo that can be simply typed in your
input where you need it. The result is to typeset the hash character from the current font.

This character has many other names, varying by locale, such as “number sign”, “pound”,
and “octothorp”. It is also sometimes called “sharp” or “sharp sign” since it vaguely
resembles the musical symbol by that name. In situations where Texinfo is used, “hash” is
the most common in our experience.

However, Texinfo uses the hash character as a special character in one restricted context:
to introduce the so-called #line directive and variants (see Section 16.7 [External Macro
Processors], page 153).

So, in order to typeset an actual hash character in such a place (for example, in a program
that needs documentation about #line), it’s necessary to use @hashchar{} or some other
construct. Here’s an example:

@hashchar{} 10 "example.c"

Although ‘@hashchar{}’ can be used nearly anywhere, there is no need for it anywhere
except this unusual case.

11.1.6 Inserting ‘&’ with @& and @ampchar{}

Ordinarily, an ampersand ‘&’ is a normal character in Texinfo that can be simply typed in
your input where you need it. The result is to typeset the ampersand character.

However, the ampersand character is treated specially in just one restricted context. In
the argument to a definition command (see Chapter 13 [Definition Commands], page 118),

Chapter 11: Special Insertions 100

an ampersand followed by a series of letters may be typeset specially when processing with
TEX

1 (see Section 13.8 [Def Cmd Conventions], page 128). For example:

@defun foo integer1 &optional integer2 &rest integers

@code{foo} described here.

@end defun

may have ‘&optional’ and ‘&rest’ formatted in bold, even without any @-command involved.

So, in order to typeset an ampersand in such a context, it’s necessary to use @& or some
other construct. Here’s an example of a C++ function taking a reference as a parameter:

@deftypefn Function int foo (const std::vector<int>@& @var{bar})

Documentation of @code{foo}.

@end deftypefn

This gives the output

[Function]int foo (const std::vector<int>& bar)
Documentation of foo.

Although ‘@&’ and ‘@ampchar{}’ can be used nearly anywhere, there is no need for them
anywhere except this unusual case.

11.2 Inserting Quote Characters

As explained in the early section on general Texinfo input conventions (see Section 2.1
[Conventions], page 9), Texinfo source files use the ASCII character ` (96 decimal) to produce
a left quote (‘), and ASCII ' (39 decimal) to produce a right quote (’). Doubling these input
characters (`` and '') produces double quotes (“ and ”). These are the conventions used
by TEX.

In examples of computer code, however, ` and ' produce typical renderings for these
ASCII characters: the backtick character (standalone grave accent) and undirected single
quote respectively. In the past, directed glyphs (‘ and ’) were used by default in TEX
output. Texinfo provides these commands to choose between these alternate renderings:

@codequoteundirected on-off
Set to ‘off’ to output the ' character in code environments as the right curly
single quote.

@codequotebacktick on-off
Set to ‘off’ to output the ` character in code environments as the left curly
single quote.

If you want these settings for only part of the document, @codequote... on will restore
the normal behavior, as in @codequoteundirected on.

These settings affect @code, @example, @kbd, @samp, @verb, and @verbatim. See Sec-
tion 6.1.1 [Useful Highlighting], page 55.

Unfortunately, some document viewers will mangle the directed quote characters when
copying and pasting. (The free PDF reader xpdf works fine, but other PDF readers, both
free and nonfree, have problems.)

1 This syntax is used for Emacs Lisp keywords. See Section “A Sample Function Description” in GNU
Emacs Lisp Reference Manual.

Chapter 11: Special Insertions 101

This feature can also be controlled by using @set and @clear on the corresponding
variables txicodequoteundirected and txicodequotebacktick.

11.3 Inserting Space

The following sections describe commands that control spacing of various kinds within and
after sentences.

11.3.1 Multiple Spaces

Ordinarily, multiple whitespace characters (space, tab, and newline) are collapsed into a
single space.

Occasionally, you may want to produce several consecutive spaces, either for purposes
of example (e.g., what your program does with multiple spaces as input), or merely for
purposes of appearance in headings or lists. Texinfo supports three commands: @SPACE,
@TAB, and @NL, all of which insert a single space into the output. (Here, @SPACE represents
an ‘@’ character followed by a space, i.e., ‘@ ’, TAB represents an actual tab character, and
@NL represents an ‘@’ character and end-of-line, i.e., when ‘@’ is the last character on a line.)

For example,

Spacey@ @ @ @

example.

produces

Spacey example.

Do not follow any of these commands with braces.

To produce a non-breakable space, see Section 12.6 [@tie], page 116.

11.3.2 Not Ending a Sentence

When a period, exclamation point or question mark is at the end of a sentence, slightly
more space is inserted after it in a typeset manual.

Usually, Texinfo can determine automatically when a period ends a sentence. However,
special commands are needed in some circumstances. Use the @: command after a period,
question mark, exclamation mark or colon that should not be followed by extra space. This
is necessary in the following situations:

1. After a period that ends a lowercase abbreviation which is not at the end of a sentence.

2. When a parenthetical remark in the middle of a sentence (like this one!) ends with a
period, exclamation point or question mark, @: should be used after the right parenthesis.
Similarly for right brackets and right quotes (both single and double).

For example:

‘foo vs.@: bar (or?)@: baz’,

The first line below shows the output, and for comparison, the second line shows the spacing
when the ‘@:’ commands were not used.

foo vs. bar (or?) baz
foo vs. bar (or?) baz

If you look carefully, you will see a bit of extraneous space after the ‘vs.’ and ‘(or?)’.

Chapter 11: Special Insertions 102

It may help you to remember what @: does by imagining that it stands for an invisible
lower-case character that stops a word ending in a period.

A few Texinfo commands force normal interword spacing, so that you don’t have to
insert @: where you otherwise would. These are the code-like highlighting commands, @var,
@abbr, and @acronym (see Section 6.1.1 [Useful Highlighting], page 55). For example, in
‘@code{foo. bar}’ the period is not considered to be the end of a sentence, and no extra
space is inserted.

@: has no effect on the HTML or DocBook output.

11.3.3 Ending a Sentence

As mentioned above, Texinfo normally inserts additional space after the end of a sentence.
It uses the same heuristic for this as TEX: a sentence ends with a period, exclamation point,
or question mark, either preceded or followed by optional closing punctuation, and then
whitespace, and not preceded by a capital letter.

Use @. instead of a period, @! instead of an exclamation point, and @? instead of a
question mark at the end of a sentence that does end with a capital letter. Do not put
braces after any of these commands. For example:

Give it to M.I.B. and to M.E.W@. Also, give it to R.J.C@.

Give it to M.I.B. and to M.E.W. Also, give it to R.J.C.

The output follows. In printed output and Info, you can see the desired extra whitespace
after the ‘W’ in the first line.

Give it to M.I.B. and to M.E.W. Also, give it to R.J.C.
Give it to M.I.B. and to M.E.W. Also, give it to R.J.C.

In other output formats, @. is equivalent to a simple ‘.’; likewise for @! and @?.

The “closing punctuation” mentioned above is defined as a right parenthesis (‘)’, right
bracket (‘]’), or right quote, either single or double (‘'’ and ‘''’; the many possible additional
Unicode right quotes are not included). These characters can be thought of as invisible with
respect to whether a given period ends a sentence. (This is the same rule as TEX.) For
instance, the periods in ‘foo.) Bar’ and ‘foo.'' Bar’ do end sentences.

The meanings of @: and @., etc. in Texinfo are designed to work well with the Emacs
sentence motion commands (see Section “Sentences” in The GNU Emacs Manual). It may
help to imagine that the ‘@’ in ‘@.’, etc., is an invisible lower-case letter ‘a’ which makes an
upper-case letter before it immaterial for the purposes of deciding whether the period ends
the sentence.

A few Texinfo commands are not considered as being an abbreviation, even though they
may end with a capital letter when expanded, so that you don’t have to insert @. and
companions. Notably, this is the case for code-like highlighting commands, @var arguments
ending with a capital letter, @LaTeX, and @TeX. For example, that sentence ended with ‘...
@code{@@TeX}.’; @. was not needed. Similarly, in ... @var{VARNAME}. Text the period
after VARNAME ends the sentence; there is no need to use @..

11.3.4 @frenchspacing val: Control Sentence Spacing

In American typography, it is traditional and correct to put extra space at the end of a
sentence. This is the default in Texinfo (implemented in Info and printed output, not in

Chapter 11: Special Insertions 103

other output formats). In French typography (and others), this extra space is wrong; all
spaces are uniform.

Therefore Texinfo provides the @frenchspacing command to control the spacing after
punctuation. It reads the rest of the line as its argument, which must be the single word
‘on’ or ‘off’ (always these words, regardless of the language of the document). Here is an
example:

@frenchspacing on

This is text. Two sentences. Three sentences. French spacing.

@frenchspacing off

This is text. Two sentences. Three sentences. Non-French spacing.

produces:

This is text. Two sentences. Three sentences. French spacing.

This is text. Two sentences. Three sentences. Non-French spacing.

@frenchspacing also affects the output after @., @!, and @? (see Section 11.3.3 [Ending
a Sentence], page 102).

@frenchspacing has no effect on the HTML or DocBook output.

11.3.5 @dmn{dimension}: Format a Dimension

You can use the @dmn command to format a dimension with just enough space for proper
typesetting inserted in printed output. In other output formats, the formatting commands
insert no space at all.

To use the @dmn command, write the number and then follow it immediately, with no
intervening space, by @dmn, and then by the dimension within braces. For example,

A4 paper is 8.27@dmn{in} wide.

produces

A4 paper is 8.27 in wide.

Not everyone uses this style. Some people prefer ‘8.27 in.’ or ‘8.27 inches’. In these cases,
however, you need to use @tie (see Section 12.6 [@tie], page 116) or @w (see Section 12.5
[@w], page 115) so that no line break can occur between the number and the dimension. Also,
if you write a period after an abbreviation within a sentence (as with the ‘in.’ above), you
should write ‘@:’ after the period to avoid inserting extra whitespace in printed output, as
shown here. See Section 11.3.2 [Not Ending a Sentence], page 101.

11.4 Inserting Accents

Here is a table with the commands Texinfo provides for inserting floating accents. They
all need an argument, the character to accent, which can either be given in braces as usual
(@'{e}), or, as a special case, the braces can be omitted, in which case the argument is the
next character (@'e). This is to make the source as convenient as possible to type and read,
since accented characters are very common in some languages.

If the command is alphabetic, such as @dotaccent, then there must be a space between
the command name and argument if braces are not used. If the command is non-alphabetic,
such as @', then there must not be a space; the argument is the very next character.

Chapter 11: Special Insertions 104

Exception: the argument to @tieaccent must be enclosed in braces (since it is two
characters instead of one).

In Info and plain text output, accent constructs are output as the true accented characters
if the document encoding supports the required characters, unless the option --disable-

encoding is given to texi2any (see Section 14.2 [@documentencoding], page 132). ASCII
transliterations are used if the encoded characters are not output.

Command Output What
@"o ö umlaut accent
@’o ó acute accent
@,{c} ç cedilla accent
@=o ō macron/overbar accent
@^o ô circumflex accent
@‘o ò grave accent
@~o ~o tilde accent
@dotaccent{o} ȯ overdot accent
@H{o} ő long Hungarian umlaut
@ogonek{a} ¡ ogonek
@ringaccent{o} o̊ ring accent
@tieaccent{oo} �oo tie-after accent
@u{o} ŏ breve accent
@ubaraccent{o} o

¯
underbar accent

@udotaccent{o} o. underdot accent
@v{o} ǒ caron/hacek/check accent

This table lists the Texinfo commands for inserting other characters commonly used in
languages other than English.

@exclamdown{} ¡ upside-down !
@questiondown{} ¿ upside-down ?

@aa{} @AA{} å Å a,A with circle
@ae{} @AE{} æ Æ ae,AE ligatures
@dh{} @DH{} ð Ð Icelandic eth
@dotless{i} ı dotless i
@dotless{j} ȷ dotless j
@l{} @L{} ª � suppressed-L,l
@o{} @O{} ø Ø O,o with slash
@oe{} @OE{} œ Œ oe,OE ligatures
@ordf{} @ordm{} a o Spanish ordinals
@ss{} ß es-zet or sharp S
@th{} @TH{} þ Þ Icelandic thorn

11.5 Inserting Quotation Marks

Use doubled single-quote characters to begin and end quotations: ‘‘...’’. Two single
quotes are converted to left- and right-hand doubled quotation marks, “like this”.

You may occasionally need to produce two consecutive single quotes; for example, in
documenting a computer language such as Maxima where ’’ is a valid command. You

Chapter 11: Special Insertions 105

can do this with the input ’@w{}’; the empty @w command stops the combination into the
double-quote characters.

The left quote character (‘, ASCII code 96) used in Texinfo is a grave accent in ANSI
and ISO character set standards. We use it as a quote character because that is how TEX is
set up, by default.

Texinfo supports several other quotation marks used in languages other than English.
Below is a table with the commands Texinfo provides for inserting quotation marks.

Command Glyph Unicode name (point)
@quotedblleft{} `` “ Left double quotation mark (U+201C)
@quotedblright{} '' ” Right double quotation mark (U+201D)
@quoteleft{} ` ‘ Left single quotation mark (U+2018)
@quoteright{} ' ’ Right single quotation mark (U+2019)
@quotedblbase{} � Double low-9 quotation mark (U+201E)
@quotesinglbase{}
 Single low-9 quotation mark (U+201A)
@guillemetleft{} � Left-pointing double angle quotation

mark (U+00AB)

@guillemetright{} � Right-pointing double angle quotation
mark (U+00BB)

@guilsinglleft{} � Single left-pointing angle quotation
mark (U+2039)

@guilsinglright{} � Single right-pointing angle quotation
mark (U+203A)

For the double angle quotation marks, Adobe and LATEX glyph names are also supported:
@guillemotleft and @guillemotright. These names are incorrect; a “guillemot” is a bird
species (a type of auk).

The standard TEX fonts support the usual quotation marks used in English (the ones
produced with single and doubled ASCII single quotes). For the other quotation marks,
TEX uses European Computer Modern (EC) fonts (ecrm1000 and other variants). These
fonts are freely available, of course; you can download them from http://ctan.org/pkg/

ec, among other places.

The free EC fonts are bitmap fonts created with Metafont. Especially for on-line viewing,
Type 1 (vector) versions of the fonts are preferable; these are available in the CM-Super
font package (http://ctan.org/pkg/cm-super).

Both distributions include installation instructions.

Traditions for quotation mark usage vary to a great extent between languages (https://
en.wikipedia.org/wiki/Quotation_mark). Texinfo does not provide commands or config-
urations for typesetting quotation marks according to the numerous traditions. Therefore,
you have to choose the commands appropriate for the language of your manual. Some-
times aliases (see Section 16.4 [@alias], page 150) can simplify the usage and make the
source code more readable. For example, in German, @quotedblbase is used for the left
double quote, and the right double quote is the glyph produced by @quotedblleft, which
is counterintuitive. Thus, in this case the following aliases would be convenient:

@alias lgqq = quotedblbase

@alias rgqq = quotedblleft

http://ctan.org/pkg/ec
http://ctan.org/pkg/ec
http://ctan.org/pkg/cm-super
https://en.wikipedia.org/wiki/Quotation_mark
https://en.wikipedia.org/wiki/Quotation_mark

Chapter 11: Special Insertions 106

11.6 @sub and @sup: Inserting Subscripts and Superscripts

You can insert subscripts and superscripts with the @sub and @sup commands. For example:

here@sub{below}@sup{above}

produces:

herebelow
above

In Info and plain text, @sub{text} is currently output as ‘_{text}’ and @sup{text} as
‘^{text}’, including the literal braces (to mark the beginning and end of the “script” text to
the reader).

When the output format (and display program) permit (printed output, HTML), the
superscript is set above the subscript when both commands are given consecutively.

For subscripts and superscripts in mathematical expressions, it is better to use TEX’s ‘_’
and ‘^’ characters. See the next section.

11.7 @math and @displaymath: Formatting Mathematics

You can write a mathematical expression, equation or formula using the @math command.
Write the TEX math notation between braces, like this:

@math{\partial_\alpha \partial^\alpha A^\beta = \mu_0 J^\beta}

@math is formatted inline when used inside a paragraph, like ∂α∂
αAβ = µ0J

β in this
example. The @math command has no special effect on the Info output, merely outputting
the contents verbatim.

For printed output, @math switches into TEX “math mode”. In that context, ‘\’ must be
used instead of ‘@’ for plain TEX math control sequences for symbols, functions, and so on.

By default, the HTML output is only emphasized. texi2any provides three options
for displaying properly formatted mathematics for HTML. You can select these with the
HTML_MATH variable (see Section 19.4.3 [HTML Customization Variables], page 174). With
HTML_MATH set to ‘l2h’, texi2any attempts to use the latex2html program to produce
image files for mathematical material. With the ‘t4h’ setting, texi2any attempts to use
the tex4ht program. With the ‘mathjax’ setting, texi2any inserts references in the output
files to MathJax scripts to format the material. The MathJax option requires JavaScript
to be enabled in the browser to work. See also Section 19.4.4 [MathJax Customization
Variables], page 181, Section 19.4.5 [latex2html Customization Variables], page 181, and
Section 19.4.6 [tex4ht Customization Variables], page 182.

For displayed equations, you can use the @displaymath command. Example:

@displaymath

f(x) = {1\over\sigma\sqrt{2\pi}}

e^{-{1\over2}\left({x-\mu\over\sigma}\right)^2}

@end displaymath

which produces:

f(x) =
1

σ
√
2π
e−

1
2(

x−µ
σ)

2

In general, the contents of @math or @displaymath should be plain TEX only, with no
interspersed Texinfo commands. If you do use any Texinfo commands, then you should

Chapter 11: Special Insertions 107

mark these with ‘@’ as usual, rather than ‘\’ (e.g. ‘@var’ rather than ‘\var’), but we do not
guarantee which Texinfo commands will work.

Although @sub and @sup may work inside math mode in some contexts, it is better to
use TEX’s ‘_’ and ‘^’ characters to denote subscripts and superscripts within mathematical
expressions.

LATEX-specific code will only work when the output format is LATEX, and with the
HTML_MATH options (although tex4ht needs T4H_MATH_CONVERSION to be set to ‘latex’; see
Section 19.4.6 [tex4ht Customization Variables], page 182).

Due to the conflict with Texinfo’s @sup command, you can access the plain TEX command
\sup as \mathopsup instead, in the unlikely occurrence that you want to do this (but only
when processing with TEX, not when outputting LATEX nor with any of the HTML_MATH

options).

11.8 Glyphs for Text

Texinfo has support for a few additional glyphs that are commonly used in printed text but
not available in ASCII. Of course, there are many thousands more. It is possible to use
Unicode characters as-is as far as texi2any is concerned, but TEX is not so lucky.

11.8.1 @TeX{} (TEX) and @LaTeX{} (LATEX)

Use the @TeX{} command to generate ‘TEX’. In a printed manual, this is a special logo that
is different from three ordinary letters. In other output formats, it just looks like ‘TeX’.

Similarly, use the @LaTeX{} command to generate ‘LATEX’, which is even more special in
printed manuals (and different from the incorrect La@TeX{}. In other output formats, the
result is just ‘LaTeX’.

The spelling of these commands is unusual for Texinfo, in that they use both uppercase
and lowercase letters.

11.8.2 @copyright{} (c©)

Use the @copyright{} command to generate the copyright symbol, ‘ c©’. Where possible,
this is a ‘c’ inside a circle; otherwise this is ‘(C)’.

Legally, it’s not necessary to use the copyright symbol; the English word ‘Copyright’
suffices, according to international treaty.

11.8.3 @registeredsymbol{} (R©)

Use the @registeredsymbol{} command to generate the registered symbol, ‘ R©’. Where
possible, this is an ‘R’ inside a circle; otherwise this is ‘(R)’.

11.8.4 @dots (. . .) and @enddots (. . .)

An ellipsis (a sequence of dots) would be spaced wrong when typeset as a string of periods,
so a special command is used in Texinfo: use the @dots{} command to generate a normal
ellipsis, which is three dots in a row, appropriately spaced . . . like so. To emphasize: do not
simply write three periods in the input file; that could work in some output formats, but
would produce the wrong amount of space between the periods in printed manuals.

The @enddots{} command generates an end-of-sentence ellipsis, which also has three
dots, but with different spacing afterwards, . . . Look closely to see the difference.

Chapter 11: Special Insertions 108

Here is an ellipsis: . . . Here are three periods in a row: ...

In printed (and usually HTML) output, the three periods in a row are much closer
together than the dots in the ellipsis.

11.8.5 @bullet (•)
Use the @bullet{} command to generate a large round dot, or the closest possible thing to
one. An asterisk can also be used. Here is a bullet: •

When you use @bullet in @itemize, you do not need to type the braces, because
@itemize supplies them. (see Section 8.2 [@itemize], page 77).

11.8.6 @euro (e): Euro Currency Symbol

Use the @euro{} command to generate ‘e’. Where possible, this is the symbol for the Euro
currency. Otherwise, the word ‘Euro’ is used.

The Euro symbol does not exist in the standard TEX fonts (which were designed before
the Euro was legislated into existence). Therefore, TEX uses an additional font, named
feymr10 (along with other variables). It is freely available, of course; you can download
it from http://ctan.org/pkg/eurosym, among other places. The distribution includes
installation instructions.

11.8.7 @pounds (£): Pounds Sterling

Use the @pounds{} command to generate ‘£’. Where possible, this is the symbol for the
pounds sterling British currency. Otherwise, it is ‘#’.

11.8.8 @textdegree (°): Degrees Symbol

Use the @textdegree{} command to generate ‘°’. Where possible, this is the normal symbol
for degrees. Otherwise, it is an ‘o’.

11.8.9 @minus (−): Inserting a Minus Sign

Use the @minus{} command to generate a minus sign. Where the character encoding and
font used in the output allow it, the symbol is the customary length for a minus sign—a
little longer than a hyphen, shorter than an em-dash:

‘−’ is a minus sign generated with ‘@minus{}’,

‘-’ is a hyphen generated with the character ‘-’,

‘—’ is an em-dash for text.

If you actually want to typeset some math that does a subtraction, it is better to use
@math, as in @math{a-b} (see Section 11.7 [Inserting Math], page 106).

11.8.10 @geq (≥) and @leq (≤): Inserting Relations

Use the @geq{} and @leq{} commands to generate greater-than-or-equal and less-than-
equal-signs, ‘≥’ and ‘≤’. When those symbols are not available, the ASCII sequences ‘>=’
and ‘<=’ are output.

http://ctan.org/pkg/eurosym

Chapter 11: Special Insertions 109

11.9 Glyphs for Programming

In Texinfo, code is often illustrated in examples that are delimited by @example and @end

example. In such examples, you can indicate the results of evaluation or an expansion using
‘⇒’ or ‘ 7→’. Likewise, there are commands to insert glyphs to indicate printed output, error
messages, equivalence of expressions, the location of point in an editor, and GUI operation
sequences.

The glyph-insertion commands do not need to be used within an example, but most often
they are. All glyph-insertion commands are followed by empty braces.

11.9.1 Glyphs Summary

Here is a summary of the glyph commands:

⇒ @result{} indicates the result of an expression.

7→ @expansion{} indicates the results of a macro expansion.

a @print{} indicates printed output.

error @error{} indicates the following text is an error message.

≡ @equiv{} indicates the exact equivalence of two forms.

? @point{} shows the location of point.

A → B @clicksequence{A @click{} B} indicates a GUI operation sequence: first A,
then clicking B, or choosing B from a menu, or otherwise selecting it.

11.9.2 @result{} (⇒): Result of an Expression

Use the @result{} command to indicate the result of evaluating an expression.

The @result{} command is displayed as ‘⇒’, either a double stemmed arrow or (when
that is not available) the ASCII sequence ‘=>’.

Thus, the following,

(cdr '(1 2 3))

⇒ (2 3)

may be read as “(cdr '(1 2 3)) evaluates to (2 3)”.

11.9.3 @expansion{} (7→): Indicating an Expansion

When an expression is a macro call, it expands into a new expression. You can indicate the
result of the expansion with the @expansion{} command.

The @expansion{} command is displayed as ‘ 7→’, either a long arrow with a flat base or
(when that is not available) the ASCII sequence ‘==>’.

For example, the following

@example lisp

(third '(a b c))

@expansion{} (car (cdr (cdr '(a b c))))

@result{} c

@end example

Chapter 11: Special Insertions 110

produces

(third '(a b c))

7→ (car (cdr (cdr '(a b c))))

⇒ c

which may be read as:

(third '(a b c)) expands to (car (cdr (cdr '(a b c)))); the result of evalu-
ating the expression is c.

Often, as in this case, an example looks better if the @expansion{} and @result{} commands
are indented.

11.9.4 @print{} (a): Indicating Generated Output

Sometimes an expression will generate output during its execution. You can indicate such
displayed output with the @print{} command.

The @print{} command is displayed as ‘ a ’, either a horizontal dash butting against a
vertical bar or (when that is not available) the ASCII sequence ‘-|’.

In the following example, the printed text is indicated with ‘ a ’, and the value of the
expression follows on the last line.

(progn (print 'foo) (print 'bar))

a foo

a bar

⇒ bar

In a Texinfo source file, this example is written as follows:

@example lisp

(progn (print 'foo) (print 'bar))

@print{} foo

@print{} bar

@result{} bar

@end example

11.9.5 @error{} (error): Indicating an Error Message

A piece of code may cause an error when you evaluate it. You can designate the error
message with the @error{} command.

The @error{} command is displayed as ‘ error ’, either the word ‘error’ in a box in the
printed output, the word error followed by an arrow in other formats or (when no arrow is
available) ‘error-->’.

Thus,

@example lisp

(+ 23 'x)

@error{} Wrong type argument: integer-or-marker-p, x

@end example

produces

(+ 23 'x)

error Wrong type argument: integer-or-marker-p, x

Chapter 11: Special Insertions 111

This indicates that the following error message is printed when you evaluate the expression:

Wrong type argument: integer-or-marker-p, x

The word ‘ error ’ itself is not part of the error message.

11.9.6 @equiv{} (≡): Indicating Equivalence

Sometimes two expressions produce identical results. You can indicate the exact equivalence
of two forms with the @equiv{} command. The @equiv{} command is displayed as ‘≡ ’,
either a standard mathematical equivalence sign (three parallel horizontal lines) or (when
that is not available) as the ASCII sequence ‘==’.

Thus,

@example lisp

(make-sparse-keymap) @equiv{} (list 'keymap)

@end example

produces

(make-sparse-keymap) ≡ (list 'keymap)

This indicates that evaluating (make-sparse-keymap) produces identical results to evaluat-
ing (list 'keymap).

11.9.7 @point{} (?): Indicating Point in a Buffer

Sometimes you need to show an example of text in an Emacs buffer. In such examples, the
convention is to include the entire contents of the buffer in question between two lines of
dashes containing the buffer name.

You can use the ‘@point{}’ command to show the location of point in the text in the
buffer. (The symbol for point, of course, is not part of the text in the buffer; it indicates the
place between two characters where point is located.)

The @point{} command is displayed as ‘?’, either a pointed star or (when that is not
available) the ASCII sequence ‘-!-’.

The following example shows the contents of buffer foo before and after evaluating a
Lisp command to insert the word changed.

---------- Buffer: foo ----------

This is the ?contents of foo.

---------- Buffer: foo ----------

(insert "changed ")

⇒ nil

---------- Buffer: foo ----------

This is the changed ?contents of foo.

---------- Buffer: foo ----------

In a Texinfo source file, the example is written like this:

@example

---------- Buffer: foo ----------

This is the @point{}contents of foo.

Chapter 11: Special Insertions 112

---------- Buffer: foo ----------

(insert "changed ")

@result{} nil

---------- Buffer: foo ----------

This is the changed @point{}contents of foo.

---------- Buffer: foo ----------

@end example

11.9.8 Click Sequences

When documenting graphical interfaces, it is necessary to describe sequences such as ‘Click
on ‘File’, then choose ‘Open’, then . . . ’. Texinfo offers commands @clicksequence and
click to represent this, typically used like this:

... @clicksequence{File @click{} Open} ...

which produces:

. . . File → Open . . .

The @click command produces a right arrow by default; this glyph is also available
independently via the command @arrow{}.

You can change the glyph produced by @click with the command @clickstyle, which
takes a command name as its single argument on the rest of the line, much like @itemize

and friends (see Section 8.2 [@itemize], page 77). The command should produce a glyph,
and the usual empty braces ‘{}’ are omitted. Here’s an example:

@clickstyle @result

... @clicksequence{File @click{} Open} ...

now produces:

. . . File ⇒ Open . . .

11.10 Inserting Unicode: @U

The command @U{hex} inserts a representation of the Unicode character U+hex. For
example, @U{0132} inserts the Dutch ‘IJ’ ligature (‘IJ’).

The hex value should be at least four hex digits; leading zeros are not added. In general,
hex must specify a valid normal Unicode character; e.g., U+10FFFF (the very last code
point) is invalid by definition, and thus cannot be inserted this way.

@U is useful for inserting occasional glyphs for which Texinfo has no dedicated command,
while allowing the Texinfo source to remain purely 7-bit ASCII for maximum portability.

This command has many limitations—the same limitations as inserting Unicode characters
in UTF-8 or another binary form. First and most importantly, TEX knows nothing about
most of Unicode. Supporting specific additional glyphs upon request is possible, but it’s not
viable for texinfo.tex to support whole additional scripts (Japanese, Urdu, . . .). The @U
command does nothing to change this. If the specified character is not supported in TEX,
an error is given. LATEX output has more possibilities regarding UTF-8, but could require
extra code to load fonts and declare how UTF-8 characters are output. (See Section 14.2
[@documentencoding], page 132.)

Chapter 11: Special Insertions 113

In HTML and DocBook, the output from @U is always an entity reference of the form
‘&#xhex;’, as in ‘Ĳ’ for the example above. This should work even when an HTML
document uses some other encoding (say, Latin 1) and the given character is not supported
in that encoding.

In Info and plain text, if the output encoding is not UTF-8, the output is the ASCII
sequence ‘U+hex’, as in the six ASCII characters ‘U+0132’ for the example above.

114

12 Forcing and Preventing Breaks

Line and page breaks can sometimes occur in the ‘wrong’ place in one or another form of
output. It’s up to you to ensure that text looks right in all the output formats.

For example, in a printed manual, page breaks may occur awkwardly in the middle of an
example; to prevent this, you can hold text together using a grouping command that keeps
the text from being split across two pages. Conversely, you may want to force a page break
where none would normally occur.

You can use the break, break prevention, or pagination commands to fix problematic line
and page breaks.

12.1 Break Commands

The break commands create or allow line and paragraph breaks:

@* Force a line break.

@sp n Skip n blank lines.

@- Insert a discretionary hyphen.

@hyphenation{hy-phen-a-ted words}
Define hyphen points in hy-phen-a-ted words.

These commands hold text together on a single line:

@w{text} Prevent text from being split and hyphenated across two lines.

@tie{} Insert a normal interword space at which a line break may not occur.

The pagination commands apply only to printed output, since other output formats do
not have pages.

@page Start a new page.

@group Hold text together that must appear on one page.

@need mils
Start a new page if not enough space on this one.

12.2 @* and @/: Generate and Allow Line Breaks

The @* command forces a line break in all output formats. The @/ command allows a line
break (printed manual only).

Here is an example with @*:

This sentence is broken @*into two lines.

produces

This sentence is broken

into two lines.

The @/ command can be useful within long URLs or other identifiers where TEX can’t
find a good place to break. TEX will automatically break URLs at the natural places (see
Section 5.14.2 [URL Line Breaking], page 53), so only use @/ if you need it. @/ has no effect
on the other output formats.

Chapter 12: Forcing and Preventing Breaks 115

12.3 @- and @hyphenation: Hyphenation in Printed Output

Although TEX’s hyphenation algorithm is generally pretty good, it does miss useful hyphen-
ation points from time to time. (Or, far more rarely, insert an incorrect hyphenation.) So,
for documents with an unusual vocabulary or when fine-tuning for a printed edition, you
may wish to specify hyphenation points explicitly. Texinfo supports two commands for this:

@-

Insert a discretionary hyphen, i.e., a place where a word can be broken across lines
with a hyphen. This is especially useful when you notice that an overfull hbox is
due to TEX missing a hyphenation (see Section 18.6 [Overfull hboxes], page 162).
TEX will not insert any hyphenation points itself into a word containing @-.

@hyphenation{hy-phen-a-ted words}
Give hyphenation points for certain words. For example:

@hyphenation{man-u-script man-u-scripts}

As shown, you put a ‘-’ at each hyphenation point. TEX only uses the specified
hyphenation points when the words match exactly, so give all necessary variants,
such as plurals.

Non-printed output is not hyphenated, so none of these commands have any effect in
other output formats.

12.4 @allowcodebreaks: Control Line Breaks in @code

Ordinarily, TEX considers breaking lines at ‘-’ and ‘_’ characters within @code and related
commands (see Section 6.1.2 [@code], page 56), more or less as if they were “empty”
hyphenation points.

This is necessary since many manuals, especially for Lisp-family languages, must document
very long identifiers. On the other hand, some manuals don’t have this problem, and you
may not wish to allow a line break at the underscore in, for example, SIZE_MAX, or even
worse, after any of the four underscores in __typeof__.

So Texinfo provides this command:

@allowcodebreaks false

to prevent from breaking at ‘-’ or ‘_’ within @code. You can go back to allowing such breaks
with @allowcodebreaks true. Write these commands on lines by themselves.

These commands can be given anywhere in the document. For example, you may have
just one problematic paragraph where you need to turn off the breaks, but want them in
general, or vice versa.

This command has no effect except in TEX output.

12.5 @w{text}: Prevent Line Breaks

@w{text} outputs text, while prohibiting line breaks within text.

Thus, you can use @w to produce a non-breakable space, fixed at the width of a normal
interword space:

@w{ } @w{ } @w{ } indentation.

Chapter 12: Forcing and Preventing Breaks 116

produces:

indentation.

The space from @w{ }, as well as being non-breakable, also will not stretch or shrink.
Sometimes that is what you want, for instance if you’re doing manual indenting. However,
usually you want a normal interword space that does stretch and shrink (in the printed
output); for that, see the @tie command in the next section.

In printed output, you can also use the @w command to prevent a long name or phrase
being automatically hyphenated, for example if it happens to fall near the end of a line.

You can also use @w to avoid unwanted keyword expansion in source control systems. For
example, to literally write Id in your document, use @w{$}Id$. This trick isn’t effective
for output files in some output formats, though.

12.6 @tie{}: Inserting an Unbreakable Space

The @tie{} command produces a normal interword space at which a line break may not
occur. Always write it with following (empty) braces, as usual for commands used within a
paragraph. Here’s an example:

@TeX{} was written by Donald E.@tie{}Knuth.

produces:

TEX was written by Donald E. Knuth.

There are two important differences between @tie{} and @w{ }:

• The space produced by @tie{} will stretch and shrink slightly along with the normal
interword spaces in the paragraph; the space produced by @w{ } will not vary.

• @tie{} allows hyphenation of the surrounding words, while @w{ } inhibits hyphenation
of those words (for TEXnical reasons, namely that it produces an ‘\hbox’).

12.7 @sp n: Insert Blank Lines

A line beginning with and containing only @sp n generates n blank lines of space. @sp also
forces a paragraph break. For example,

@sp 2

generates two blank lines.

The @sp command is most often used in the title page.

12.8 @page: Start a New Page

A line containing only @page starts a new page in a printed manual. In other formats,
without the concept of pages, it starts a new paragraph. A @page command is often used in
the @titlepage section of a Texinfo file to start the copyright page.

12.9 @group: Prevent Page Breaks

The @group command is used to hold an example together on one page. Use it inside an
@example or similar construct to begin an unsplittable vertical group, which will appear
entirely on one page in the printed output. Terminate the group by a line containing only
@end group. This command has an effect in TEX output only.

Chapter 12: Forcing and Preventing Breaks 117

The @group and @end group commands need to be inside the @example and @end example

commands, thus:

@example

@group

...

@end group

@end example

Although @group would make sense conceptually in a wide variety of contexts, its current
implementation works only within @example and variants, and within @display, @format,
@flushleft and @flushright. See Chapter 7 [Quotations and Examples], page 66. (What
all these commands have in common is that each line of input produces a line of output.)

12.10 @need mils: Prevent Page Breaks

A line containing only @need n starts a new page in a printed manual if fewer than n mils
(thousandths of an inch) remain on the current page. Do not use braces around the argument
n. The @need command has no effect on other output formats since they are not paginated.

This paragraph is preceded by a @need command that starts a new page in printed output
if fewer than 800 mils (eight-tenths inch) remain on the page. It looks like this:

@need 800

This paragraph is preceded by ...

The @need command is useful for preventing orphans: single lines at the bottoms of
printed pages.

118

13 Definition Commands

The @deffn command and the other definition commands enable you to describe functions,
variables, macros, commands, user options, special forms and other entities in a uniform
format.

In the output, the name of the entity is shown with any arguments, along with the entity
category —‘Function’, ‘Variable’, or whatever. Underneath, the body of the definition is
indented. The name of the entity is also entered into the appropriate index.

All the definition commands follow a similar format. This chapter starts by describing
@deffn before detailing all the other definition commands.

13.1 The Template for a Definition

@deffn category name arguments...
body-of-definition
@end deffn

The @deffn command is used for definitions of entities that resemble functions—entities
that may take arguments. Write the @deffn command at the beginning of a line and follow
it on the same line by the category of the entity, the name of the entity itself, and its
arguments (if any). Then write the body of the definition on succeeding lines. Finally, end
the definition with an @end deffn command written on a line of its own.

For example,

@deffn Command forward-word count

This command moves point forward @var{count} words

(or backward if @var{count} is negative). ...

@end deffn

produces

[Command]forward-word count
This command moves point forward count words (or backward if count is
negative). . . .

Capitalize the category name like a title. If the name of the category contains spaces, as
in the phrase ‘Interactive Command’, enclose it in braces. For example:

@deffn {Interactive Command} isearch-forward

...

@end deffn

Otherwise, the second word will be mistaken for the name of the entity. As a general
rule, when any of the arguments in the heading line except the last one are more than one
word, you need to enclose them in braces. This may also be necessary if the text contains
commands, for example, ‘{declaraci@'on}’ if you are writing in Spanish.

The category is output in a different location for different output formats. For example,
in the Info file, the category appears at the beginning of the first line of the definition. With
TEX output, the category is printed next to the right margin.

@deffn enters names into the index of functions.

Chapter 13: Definition Commands 119

Three predefined, specialized variations of @deffn (@defun, @defmac, and @defspec)
specify the category for you: “Function”, “Macro”, and “Special Form” respectively. (In Lisp,
a special form is an entity much like a function.) Similarly, the general @defvr command is
accompanied by several specialized variations for describing particular kinds of variables.

13.2 Definition Command Continuation Lines

The heading line of a definition command can get very long. Therefore, Texinfo has a special
syntax allowing them to be continued over multiple lines of the source file: a lone ‘@’ at the
end of each line to be continued. Here’s an example:

@defun fn-name @

arg1 arg2 arg3

This is the basic continued defun.

@end defun

produces:

[Function]fn-name arg1 arg2 arg3
This is the basic continued defun.

As you can see, the continued lines are combined, as if they had been typed on one source
line.

Although this example only shows a one-line continuation, continuations may extend
over any number of lines, in the same way; put an @ at the end of each line to be continued.

In general, any number of spaces or tabs before the @ continuation character are collapsed
into a single space. There is one exception: the Texinfo processors will not fully collapse
whitespace around a continuation inside braces. For example:

@deffn {Category @

Name} ...

The output (not shown) has excess space between ‘Category’ and ‘Name’. To avoid this,
elide the unwanted whitespace in your input, or put the continuation @ outside braces.

@ does not function as a continuation character in any other context. Ordinarily, ‘@’
followed by a whitespace character (space, tab, newline) produces a normal interword space
(see Section 11.3.1 [Multiple Spaces], page 101).

13.3 Optional and Repeated Arguments

Some entities take optional or repeated arguments. One convention for indicating these uses
square brackets and ellipses: an argument enclosed within square brackets is optional, and
an argument followed by an ellipsis is optional and may be repeated more than once.

Thus, [optional-arg] means that optional-arg is optional and repeated-args... stands for
zero or more arguments. Parentheses are used when several arguments are grouped into
additional levels of list structure in Lisp.

Here is the definition line of an example of an imaginary (complicated) special form:

[Special Form]foobar (var [from to [inc]]) body. . .
In this example, the arguments from and to are optional, but must both be present or both
absent. If they are present, inc may optionally be specified as well. These arguments are

Chapter 13: Definition Commands 120

grouped with the argument var into a list, to distinguish them from body, which includes
all remaining elements of the form.

In a Texinfo source file, this @defspec line is written like this:

@defspec foobar (var [from to [inc]]) body@dots{}

13.4 Omitting the Space After a Definition Name

As a matter of style or as demanded by the syntax of a programming language, you may
wish to omit any space after a name in a definition, occurring before an opening bracket. To
do this, set the ‘txidefnamenospace’ flag (see Section 15.5.1 [@set @value], page 138). For
example, this input

@set txidefnamenospace

@deffn Builtin index (string, substring)

@dots{}

@end deffn

produces the following:

[Builtin]index(string, substring)
. . .

13.5 @deffnx, et al.: Two or More ‘First’ Lines

To create two or more ‘first’ or header lines for a definition, follow the first @deffn line by a
line beginning with @deffnx.

For example,

@deffn {Interactive Command} isearch-forward

@deffnx {Interactive Command} isearch-backward

These two search commands are similar except ...

@end deffn

produces

[Interactive Command]isearch-forward
[Interactive Command]isearch-backward

These two search commands are similar except . . .

Each definition command has an ‘x’ form: @defunx, @defvrx, @deftypefunx, etc.

The ‘x’ forms work similarly to @itemx (see Section 8.4.3 [@itemx], page 81).

13.6 The Definition Commands

This section describes all the definition commands of Texinfo.

13.6.1 Functions and Similar Entities

This section describes the commands for describing functions and similar entities with simple
arguments:

@deffn category name arguments...
The @deffn command is the general definition command for functions, interactive
commands, and similar entities that may take simple arguments. You must

Chapter 13: Definition Commands 121

choose a term to describe the category of entity being defined; for example,
“Function” could be used if the entity is a function. The @deffn command is
written at the beginning of a line and is followed on the same line by the category
of entity being described, the name of this particular entity, and its arguments,
if any. Terminate the definition with @end deffn on a line of its own.

For example, here is a definition:

@deffn Command forward-char nchars

Move point forward @var{nchars} characters.

@end deffn

This shows a rather terse definition for a “command” named forward-char

with one argument, nchars.

Where the output format allows, @deffn uses a typewriter font for name, and a
slanted font for the rest of the arguments, as would be produced by @var.

Within the text of the description, write an argument name explicitly with
@var to refer to the value of the argument. In the example above, we used
‘@var{nchars}’ in this way.

In the extremely unusual case when an argument name contains ‘--’, or another
character sequence which is treated specially (see Section 2.1 [Conventions],
page 9), use @code around the special characters. This avoids the conversion to
typographic en-dashes and em-dashes.

@defun name arguments...
The @defun command is the definition command for functions with simple
arguments. @defun is equivalent to ‘@deffn Function ...’. Terminate the
definition with @end defun on a line of its own.

@defmac name arguments...
The @defmac command is the definition command for macros. @defmac is
equivalent to ‘@deffn Macro ...’ and works like @defun.

@defspec name arguments...
The @defspec command is the definition command for special forms. (In Lisp,
a special form is an entity much like a function; see Section “Special Forms”
in GNU Emacs Lisp Reference Manual.) @defspec is equivalent to ‘@deffn
{Special Form} ...’ and works like @defun.

All these commands create entries in the index of functions.

13.6.2 Functions in Typed Languages

The @deftypefn command and its variants are generic commands for describing functions.
They are particularly suitable for languages in which you must declare types of variables
and functions, such as C and C++.

@deftypefn category data-type name arguments...
The @deftypefn command is the general definition command for functions
and similar entities that may take arguments and that could be typed. The
@deftypefn command is written at the beginning of a line and is followed on
the same line by the category of entity being described, information on the
returned value, the name of this particular entity, and its arguments, if any.

Chapter 13: Definition Commands 122

For example,

@deftypefn {Library Function} int foobar @

(int @var{foo}, float @var{bar})

...

@end deftypefn

produces:

[Library Function]int foobar (int foo, float bar)
. . .

This means that foobar is a “library function” that returns an int, and its
arguments are foo (an int) and bar (a float). ‘Library Function’ has to be
enclosed in braces to make it a single argument.

When using @deftypefn command and variations, you should mark parameter
names with @var to distinguish these from data type names, keywords, and
other parts of the literal syntax of the programming language. Where the output
format allows, all output on the definition line is in a typewriter font by default.
@var uses an appropriate font where it occurs.

If you are describing a procedure in a language that has packages, such as Ada,
you might consider using @deftypefn in the following manner:

@deftypefn stacks private push @

(@var{s}:in out stack; @

@var{n}:in integer)

...

@end deftypefn

(In these examples the @deftypefn arguments are shown using continuations
(see Section 13.2 [Def Cmd Continuation Lines], page 119), but could be on a
single line.)

In this instance, the procedure is classified as belonging to the package stacks
rather than classified as a ‘procedure’ and its data type is described as private.
(The name of the procedure is push, and its arguments are s and n.) Output:

[stacks]private push (s:in out stack; n:in integer)
. . .

@deftypefn and variants could be used when it is convenient to interpret the
arguments list as literal computer code, marking argument names with @var.
It is not necessary for any type names to appear, and you can give an empty
return type as ‘{}’.

The information on return values may be used to name the return variables. For
example, in Perl, returned scalars may be given the $result and $status name in
the following manner:

@deftypefn {Sub} {(@var{$result}, @var{$status} =)} @

process (@var{$input})

... Set @var{$status} to 0 in case of failure ...

@end deftypefn

to get output like

Chapter 13: Definition Commands 123

[Sub]($result, $status) = process ($input)
. . . Set $status to 0 in case of failure . . .

@deftypefn creates an entry in the index of functions for name.

@deftypefun data-type name arguments...
The @deftypefun command is the specialized definition command for functions.
The command is equivalent to ‘@deftypefn Function ...’.

@deftypefun creates an entry in the index of functions for name.

Ordinarily, the return type is printed on the same line as the function name and arguments,
as shown above. In source code, GNU style for typed functions is to put the return type on
a line by itself. So Texinfo provides an option to do that: @deftypefnnewline on.

This affects the generic functions only—not untyped functions with simple arguments
such as @deffn, not typed variables, etc. Specifically, it affects the commands in this
section, and the analogous commands for object-oriented languages, namely @deftypeop

and @deftypemethod (see Section 13.6.6.2 [Object-Oriented Methods], page 126).

Specifying @deftypefnnewline off reverts to the default.

13.6.3 Variables and Similar Entities

Here are the commands for defining variables and similar entities:

@defvr category name
The @defvr command is a general definition command for something like a
variable—an entity that records a value. You must choose a term to describe
the category of entity being defined; for example, “Variable” could be used if
the entity is a variable. Write the @defvr command at the beginning of a line
and follow it on the same line by the category of the entity and the name of the
entity.

We recommend capitalizing the category name like a title. If the name of the
category contains spaces, as in the name “User Option”, enclose it in braces.
Otherwise, the second word will be mistaken for the name of the entity. For
example,

@defvr {User Option} fill-column

This buffer-local variable specifies

the maximum width of filled lines.

...

@end defvr

Terminate the definition with @end defvr on a line of its own.

@defvr creates an entry in the index of variables for name.

@defvar name
The @defvar command is the definition command for variables. @defvar is
equivalent to ‘@defvr Variable ...’.

Chapter 13: Definition Commands 124

For example:

@defvar kill-ring

...

@end defvar

@defvar creates an entry in the index of variables for name.

@defopt name
The @defopt command is the definition command for user options, i.e., variables
intended for users to change according to taste; Emacs has many such (see
Section “Variables” in The GNU Emacs Manual). @defopt is equivalent to
‘@defvr {User Option} ...’.

13.6.4 Variables in Typed Languages

Variables in typed languages are handled in a manner similar to functions in typed languages.
See Section 13.6.2 [Typed Functions], page 121. The general definition command @deftypevr

corresponds to @deftypefn and the specialized definition command @deftypevar corre-
sponds to @deftypefun.

@deftypevr category data-type name
The @deftypevr command is the general definition command for something
like a variable in a typed language—an entity that records a value. You must
choose a term to describe the category of the entity being defined; for example,
“Variable” could be used if the entity is a variable.

The @deftypevr command is written at the beginning of a line and is followed
on the same line by the category of the entity being described, the data type,
and the name of this particular entity.

For example:

@deftypevr {Global Flag} int enable

...

@end deftypevr

produces the following:

[Global Flag]int enable
. . .

@deftypevar data-type name
The @deftypevar command is the specialized definition command for variables
in typed languages. @deftypevar is equivalent to ‘@deftypevr Variable ...’.

These commands create entries in the index of variables.

13.6.5 Data Types

Here is the command for data types:

@deftp category name attributes...
The @deftp command is the generic definition command for data types. The
command is written at the beginning of a line and is followed on the same line
by the category, by the name of the type (which is a word like int or float),

Chapter 13: Definition Commands 125

and then by names of attributes of objects of that type. Thus, you could use
this command for describing int or float, in which case you could use data

type as the category. (A data type is a category of certain objects for purposes
of deciding which operations can be performed on them.)

In Lisp, for example, pair names a particular data type, and an object of that
type has two slots called the car and the cdr. Here is how you would write
the first line of a definition of pair.

@deftp {Data type} pair car cdr

...

@end deftp

@deftp creates an entry in the index of data types.

13.6.6 Object-Oriented Programming

Here are the commands for formatting descriptions about abstract objects, such as are used
in object-oriented programming. A class is a defined type of abstract object. An instance of
a class is a particular object that has the type of the class. An instance variable is a variable
that belongs to the class but for which each instance has its own value.

13.6.6.1 Object-Oriented Variables

These commands allow you to define different sorts of variables in object-oriented program-
ming languages.

@defcv category class name
The @defcv command is the general definition command for variables associated
with classes in object-oriented programming. The @defcv command is followed
by three arguments: the category of thing being defined, the class to which it
belongs, and its name. For instance:

@defcv {Class Option} Window border-pattern

...

@end defcv

produces:

[Class Option of Window]border-pattern
. . .

@defcv creates an entry in the index of variables.

@deftypecv category class data-type name
The @deftypecv command is the definition command for typed class variables
in object-oriented programming. It is analogous to @defcv with the addition of
the data-type parameter to specify the type of the instance variable.

@deftypecv {Class Option} Window int border-pattern

...

@end deftypecv

produces:

[Class Option of Window]int border-pattern
. . .

Chapter 13: Definition Commands 126

@deftypecv creates an entry in the index of variables.

@defivar class name
The @defivar command is the definition command for instance variables in
object-oriented programming. @defivar is equivalent to ‘@defcv {Instance

Variable} ...’. For instance:

@defivar Window border-pattern

...

@end defivar

produces:

[Instance Variable of Window]border-pattern
. . .

@defivar creates an entry in the index of variables.

@deftypeivar class data-type name
The @deftypeivar command is the definition command for typed instance
variables in object-oriented programming. It is analogous to @defivar with the
addition of the data-type parameter to specify the type of the instance variable.

@deftypeivar Window int border-pattern

...

@end deftypeivar

produces:

[Instance Variable of Window]int border-pattern
. . .

@deftypeivar creates an entry in the index of variables.

13.6.6.2 Object-Oriented Methods

These commands allow you to define different sorts of function-like entities resembling
methods in object-oriented programming languages. These entities take arguments, as
functions do, but are associated with particular classes of objects.

@defop category class name arguments...
The @defop command is the definition command for these method-like entities
with simple arguments.

For example, some systems have constructs called wrappers that are associated
with classes as methods are, but that act more like macros than like functions.
You could use @defop Wrapper to describe one of these.

Sometimes it is useful to distinguish methods and operations. You can think of
an operation as the specification for a method. Thus, a window system might
specify that all window classes have a method named expose; we would say
that this window system defines an expose operation on windows in general.
Typically, the operation has a name and also specifies the pattern of arguments;
all methods that implement the operation must accept the same arguments,
since applications that use the operation do so without knowing which method
will implement it.

Chapter 13: Definition Commands 127

Often it makes more sense to document operations than methods. For example,
window application developers need to know about the expose operation, but
need not be concerned with whether a given class of windows has its own method
to implement this operation. To describe this operation, you would write:

@defop Operation windows expose

The @defop command is written at the beginning of a line and is followed on
the same line by the overall name of the category of operation, the name of the
class of the operation, the name of the operation, and its arguments, if any.

@defop creates an entry, such as ‘expose on windows’, in the index of functions.

@deftypeop category class data-type name arguments...
The @deftypeop command is the generic definition command for operations in
object-oriented programming. It is particularly suitable for typed object-oriented
languages. It is similar to @defop with the addition of the data-type parameter
to specify information on the return value of the method, for example the return
type.

@defmethod class name arguments...
The @defmethod command is the definition command for methods in object-
oriented programming. A method is a kind of function that implements an
operation for a particular class of objects and its subclasses.

@defmethod is equivalent to ‘@defop Method ...’. The command is written at
the beginning of a line and is followed by the name of the class of the method,
the name of the method, and its arguments, if any.

For example:

@defmethod bar-class bar-method argument

...

@end defmethod

illustrates the definition for a method called bar-method of the class bar-class.
The method takes an argument.

@defmethod creates an entry in the index of functions.

@deftypemethod class data-type name arguments...
The @deftypemethod command is the definition command for methods in object-
oriented languages, in particular for typed languages such as C++ and Java.
It is similar to the @defmethod command with the addition of the data-type
parameter to specify information on the return value of the method, for example
the return type.

The commands with information on return values are affected by the @deftypefnnewline
option (see Section 13.6.2 [Functions in Typed Languages], page 121).

13.7 Generic Definition Commands

Texinfo provides commands for definitions that do not produce automatic index entries.

You create a generic definition environment with ‘@defblock’ paired with ‘@end
defblock’. Within this environment, use a @defline or @deftypeline line for each symbol
you document. For example:

Chapter 13: Definition Commands 128

@defblock

@defline Macro mac (arg1, arg2)

Description of mac.

@deftypeline Builtin int foo (int @var{bar})

Description of foo.

@end defblock

This produces the output:

[Macro]mac (arg1, arg2)
Description of mac.

[Builtin]int foo (int bar)
Description of foo.

The syntax of @defline is similar to that of @deffn. The first argument gives a category
for the definition. Follow this with the symbol name, followed by any parameters. You
should surround any arguments containing spaces with braces.

You use @deftypeline in a similar way to @deftypefn, following the category with a
data type, and marking any parameters with @var. (See Section 13.6.2 [Typed Functions],
page 121).)

To share the same description for multiple symbols, you can put several @defline lines
together. For example:

@defblock

@defline Function set-var (value)

@defline {Settable Variable} var

Description of set-var and var.

@end defblock

This produces the output:

[Function]set-var (value)
[Settable Variable]var

Description of set-var and var.

It may be useful to define line macros (see Section 16.5 [Line Macros], page 151) in
combination with these commands.

13.8 Conventions for Writing Definitions

A manual need not and should not contain more than one definition for a given name. An
appendix containing a summary should use @table rather than the definition commands.

When you write a definition using @deffn, @defun, or one of the other definition com-
mands, please take care to use arguments that indicate the meaning, as with the count
argument to the forward-word function. Also, if the name of an argument contains the
name of a type, such as integer, take care that the argument actually is of that type.

Fonts. As Texinfo is a semantic language, you should nearly never need to specify font
styles with explicit font commands in definitions (see Section 6.2.3 [Fonts], page 64). However,

Chapter 13: Definition Commands 129

you may be need to work around problems for particular output formats and/or constructs.
Here are some possibilities:

• Explicitly marking a Lisp keyword like ‘&keyword’ with @r{&keyword}, producing
&keyword.

Note such keywords in definition arguments are (at present) rendered in roman in TEX,
but this formatting is not done in any other output format.

• ‘@r{@slanted{argument}}’, producing argument, similar to @var but avoiding upper-
casing its argument in Info output.

In this and the previous point, @r resets the font from that being used in the definition
line context (slanted or typewriter) to a roman, upright style.

• You could use @t (or even ‘@r{@t{...’, using @r to reset font styles) to mark literal
syntax on a definition line where text would otherwise be output in the slanted roman
style. @code would be inappropriate here as it adds quotation marks in Info output.

Some degree of trial and error may be needed to get the result you want. As ever, how
nested font commands combine depends on the output format, so should be avoided where
possible.

Hopefully, such usages are kept to a minimum. One possibility is to wrap these in @macro

(see Chapter 16 [Defining New Texinfo Commands], page 144), allowing these usages to be
easily changed in the future.

13.9 A Sample Function Definition

Here is a definition from Section “Calling Functions” in The GNU Emacs Lisp Reference
Manual, using the @defun command. The name of the function, apply, follows immediately
after the @defun command and it is followed, on the same line, by the parameter list.

[Function]apply function &rest arguments
apply calls function with arguments, just like funcall but with one
difference: the last of arguments is a list of arguments to give to function,
rather than a single argument. We also say that this list is appended to
the other arguments.

apply returns the result of calling function. As with funcall, function
must either be a Lisp function or a primitive function; special forms and
macros do not make sense in apply.

(setq f 'list)

⇒ list

(apply f 'x 'y 'z)

error Wrong type argument: listp, z

(apply '+ 1 2 '(3 4))

⇒ 10

(apply '+ '(1 2 3 4))

⇒ 10

(apply 'append '((a b c) nil (x y z) nil))

⇒ (a b c x y z)

Chapter 13: Definition Commands 130

An interesting example of using apply is found in the description of
mapcar.

In the Texinfo source file, this example should look like this:

@defun apply function @r{&rest} arguments

@code{apply} calls @var{function} with

@var{arguments}, just like @code{funcall} but with one

difference: the last of @var{arguments} is a list of

arguments to give to @var{function}, rather than a single

argument. We also say that this list is @dfn{appended}

to the other arguments.

@code{apply} returns the result of calling

@var{function}. As with @code{funcall},

@var{function} must either be a Lisp function or a

primitive function; special forms and macros do not make

sense in @code{apply}.

@example

(setq f 'list)

@result{} list

(apply f 'x 'y 'z)

@error{} Wrong type argument: listp, z

(apply '+ 1 2 '(3 4))

@result{} 10

(apply '+ '(1 2 3 4))

@result{} 10

(apply 'append '((a b c) nil (x y z) nil))

@result{} (a b c x y z)

@end example

An interesting example of using @code{apply} is found

in the description of @code{mapcar}.

@end defun

In this manual, this function is listed in the Command and Variable Index under apply.

131

14 Internationalization

Texinfo has some support for writing in languages other than English, although this area still
needs considerable work. (If you are the one helping to translate the fixed strings written to
documents, see Section 19.5 [Internationalization of Document Strings], page 190.)

For a list of the various accented and special characters Texinfo supports, see Section 11.4
[Inserting Accents], page 103.

14.1 @documentlanguage ll[_cc]: Set the Document Language

The @documentlanguage command declares the current document locale. Write it on a line
by itself, near the beginning of the file.

@documentlanguage ll[_cc]

Include a two-letter ISO 639-2 language code (ll) following the command name, optionally
followed by an underscore and two-letter ISO 3166 two-letter country code (cc). If you have
a multilingual document, the intent is to be able to use this command multiple times, to
declare each language change. If the command is not used at all, the default is en_US for
US English.

As with GNU Gettext (see Gettext), if the country code is omitted, the main dialect
is assumed where possible. For example, de is equivalent to de_DE (German as spoken in
Germany).

For Info and other online output, this command changes the translation of various
document strings such as “see” in cross-references (see Chapter 5 [Cross References], page 44),
“Function” in defuns (see Chapter 13 [Definition Commands], page 118), and so on. Some
strings, such as “Node:”, “Next:”, “Menu:”, etc., are keywords in Info output, so are
not translated there; they are translated in other output formats. In DocBook output
@documentlanguage sets the language for following sections.

For LATEX, this command causes code to load the ‘babel’ package to be output in the
preamble, and \selectlanguage to be output.

For TEX, this command causes a file txi-locale.tex to be read (if it exists). If
@documentlanguage argument contains the optional ‘_cc’ suffix, this is tried first. For
example, with @documentlanguage de_DE, TEX first looks for txi-de_DE.tex, then txi-

de.tex.

Such a txi-* file is intended to redefine the various English words used in TEX output,
such as ‘Chapter’, ‘See’, and so on. We are aware that individual words like these cannot
always be translated in isolation, and that a very different strategy would be required for
ideographic (among other) scripts. Help in improving Texinfo’s language support is welcome.

@documentlanguage also changes TEX’s current hyphenation patterns, if the TEX program
being run has the necessary support included. This will generally not be the case for tex
itself, but will usually be the case for up-to-date distributions of the extended TEX programs
etex (DVI output) and pdftex (PDF output). texi2dvi will use the extended TEXs if they
are available (see [Format with texi2dvi], page 157).

Since the lists of language codes and country codes are updated relatively frequently, we
don’t attempt to list them here. The valid language codes are on the official home page for
ISO 639, http://www.loc.gov/standards/iso639-2/. The country codes and the official
web site for ISO 3166 can be found via https://en.wikipedia.org/wiki/ISO_3166.

http://www.loc.gov/standards/iso639-2/
https://en.wikipedia.org/wiki/ISO_3166

Chapter 14: Internationalization 132

14.2 @documentencoding enc: Set Input Encoding

In the default case, the input and output document encoding are assumed to be UTF-8, the
vast global character encoding, expressed in 8-bit bytes. UTF-8 is compatible with 7-bit
ASCII. It is recommended to use UTF-8 encoding for Texinfo manuals.

The @documentencoding command declares the input document encoding, and also
affects the encoding of the output. Write it on a line by itself, with a valid encoding
specification following, near the beginning of the file if your document encoding is not the
default encoding.

@documentencoding enc

UTF-8 should always be the best choice for the encoding. Texinfo still supports additional
encodings, mainly for compatibility with older manuals1:

US-ASCII Character encoding based on the English alphabet.

ISO-8859-1

ISO-8859-15

ISO-8859-2

These specify the pre-UTF-8 standard encodings for Western European (the first
two) and Eastern European languages (the third), respectively. ISO 8859-15
replaces some little-used characters from 8859-1 (e.g., precomposed fractions)
with more commonly needed ones, such as the Euro symbol (e).

A full description of the encodings is beyond our scope here; one useful reference
is http://czyborra.com/charsets/iso8859.html.

koi8-r This was a commonly used encoding for the Russian language before UTF-8.

koi8-u This was a commonly used encoding for the Ukrainian language before UTF-8.

In Info output, a so-called ‘Local Variables’ section (see Section “File Variables” in The
GNU Emacs Manual) is output including the output encoding. This allows Info readers to
set the encoding appropriately. It looks like this:

Local Variables:

coding: UTF-8

End:

By default, for Info and plain text output, texi2any outputs accent constructs and
special characters (such as @'e) as the actual UTF-8 sequence or 8-bit character in the
output encoding where possible. If this is not possible, or if the option --disable-encoding

is given, an ASCII transliteration is used instead.

In HTML output, a ‘<meta>’ tag is output, in the ‘<head>’ section of the HTML, that
specifies the output encoding. Web servers and browsers cooperate to use this information
so the correct encoding is used to display the page, if supported by the system. That looks
like this:

<meta http-equiv="Content-Type" content="text/html;

charset=utf-8">

1 texi2any supports more encodings for Texinfo manuals, potentially all the encodings supported by both
Perl and iconv (see Section “Generic Charset Conversion” in The GNU C Library). The support in
output formats may be lacking, however, especially for LATEX output.

http://czyborra.com/charsets/iso8859.html

Chapter 14: Internationalization 133

In HTML and LATEX output, if OUTPUT_CHARACTERS is set (see Section 19.4.8 [Other
Customization Variables], page 183), accent constructs and special characters, such as @'e
or ``, are output as the actual UTF-8 sequence or 8-bit character in the output encoding
where possible. Otherwise, HTML entities are used for those characters in HTML, and
LATEX macros are used in LATEX.

In DocBook output, if the encoding is different from UTF-8, an encoding attribute is
added to the XML declaration. If OUTPUT_CHARACTERS is set (see Section 19.4.8 [Other
Customization Variables], page 183), accent constructs such as @'e are output as the actual
8-bit or UTF-8 character in the output encoding where possible. Otherwise XML entities
are used for those constructs.

In TEX output, the characters which are supported in the standard Computer Modern
fonts are output accordingly. For example, this means using constructed accents rather
than precomposed glyphs. Using a missing character generates a warning message, as does
specifying an unimplemented encoding.

Although modern TEX systems support nearly every script in use in the world, this
wide-ranging support is not available in texinfo.tex, and it’s not feasible to duplicate or
incorporate all that effort.

In LATEX output, code loading the ‘inputenc’ package is output based on the encoding.
This, by itself, does not ensures that all the characters from the input document can be
subsequently output. The fonts used in the default case should cover the specific Texinfo
glyphs, but not all the possible encoded characters. You may need to load different fonts in
the preamble and use \DeclareUnicodeCharacter with a UTF-8 encoding. For example:

@latex

\DeclareUnicodeCharacter{017B}{\.Z}

@end latex

Cross-references between Info files in different character encodings with non-ASCII
characters in node names fail. We strongly recommend using UTF-8 only as the encoding
for manuals with non-ASCII characters in the destinations of cross-references.

134

15 Conditionally Visible Text

The conditional commands allow you to use different text for different output formats, or
for general conditions that you define. For example, you can use them to specify different
text for the printed manual and the Info output.

The conditional commands comprise the following categories.

• Commands specific to an output format (Info, TEX, HTML, . . .).

• Commands specific to any output format excluding a given one (e.g., not Info, not TEX,
. . .).

• ‘Raw’ formatter text for any output format, passed straight through with minimal (but
not zero) interpretation of @-commands.

• Format-independent variable substitutions, and testing if a variable is set or clear.

15.1 Conditional Commands

Texinfo has an @ifformat environment for each output format, to allow conditional inclusion
of text for a particular output format.

@ifinfo begins segments of text that should be ignored when not producing Info output,
in particular in printed output. The segment of text appears only in the Info file and, for
historical compatibility, the plain text output.

The environments for the other formats are analogous:

@ifdocbook ... @end ifdocbook

Text to appear only in the DocBook output.

@ifhtml ... @end ifhtml

Text to appear only in the HTML output.

@iflatex ... @end iflatex

Text to appear only in the LATEX output.

@ifplaintext ... @end ifplaintext

Text to appear only in the plain text output.

@iftex ... @end iftex

Text to appear only in the printed manual.

@ifxml ... @end ifxml

Text to appear only in the XML output.

The @if... and @end if... commands must appear on lines by themselves in your
source file. The newlines following the commands are (more or less) treated as whitespace,
so that the conditional text is flowed normally into a surrounding paragraph.

The @if... constructs are intended to conditionalize normal Texinfo source; see Sec-
tion 15.3 [Raw Formatter Commands], page 136, for using underlying format commands
directly.

Here is an example showing all these conditionals:

@iftex

This text will appear only in the printed manual.

Chapter 15: Conditionally Visible Text 135

@end iftex

@ifinfo

However, this text will appear only in Info and plain text.

@end ifinfo

@ifhtml

And this text will only appear in HTML.

@end ifhtml

@iflatex

Moreover, this text will only appear in @LaTeX{}.

@end iflatex

@ifplaintext

Whereas this text will only appear in plain text.

@end ifplaintext

@ifxml

Notwithstanding that this will only appear in XML.

@end ifxml

@ifdocbook

Nevertheless, this will only appear in DocBook.

@end ifdocbook

The preceding example produces the following line:

This text will appear only in the printed manual.

Notice that you only see one of the input lines, depending on which version of the manual
you are reading.

In complex documents, you may want Texinfo to issue an error message in some condi-
tionals that should not ever be processed. The @errormsg{text} command will do this; it
takes one argument, the text of the error message.

We mention @errormsg{} here even though it is not strictly related to conditionals, since
in practice it is most likely to be useful in that context. Technically, it can be used anywhere.
See Section 16.7 [External Macro Processors], page 153, for a caveat regarding the line
numbers which @errormsg emits in TEX.

15.2 Conditional Not Commands

You can specify text to be included in any output format other than a given one with the
@ifnot... environments:

@ifnotdocbook ... @end ifnotdocbook

@ifnothtml ... @end ifnothtml

@ifnotinfo ... @end ifnotinfo

@ifnotlatex ... @end ifnotlatex

@ifnotplaintext ... @end ifnotplaintext

@ifnottex ... @end ifnottex

@ifnotxml ... @end ifnotxml

The @ifnot... command and the @end command must appear on lines by themselves in
your actual source file.

If the output file is being made in the given format, the region is ignored. Otherwise, it
is included.

Chapter 15: Conditionally Visible Text 136

There is one exception (for historical compatibility): @ifnotinfo text is omitted for both
Info and plain text output, not just Info. To specify text which appears only in Info and not
in plain text, use @ifnotplaintext, like this:

@ifinfo

@ifnotplaintext

This will be in Info, but not plain text.

@end ifnotplaintext

@end ifinfo

The regions delimited by these commands are ordinary Texinfo source as with @iftex, not
raw formatter source as with @tex (see Section 15.3 [Raw Formatter Commands], page 136).

15.3 Raw Formatter Commands

The @if... conditionals just described must be used only with normal Texinfo source. For
instance, most features of plain TEX will not work within @iftex. The purpose of @if...
is to provide conditional processing for Texinfo source, not provide access to underlying
formatting features. For that, Texinfo provides so-called raw formatter commands. They
should only be used when truly required (most documents do not need them).

The first raw formatter command is @tex. You can enter plain TEX completely, and use
‘\’ in the TEX commands, by delineating a region with the @tex and @end tex commands.
All plain TEX commands and category codes are restored within a @tex region. The sole
exception is that the @ character still introduces a command, so that @end tex can be
recognized. Texinfo processors will not output material in such a region unless TEX output
is being produced.

In complex cases, you may wish to define new TEX macros within @tex. You must use
\gdef to do this, not \def, because @tex regions are processed in a TEX group. If you need
to make several definitions, you may wish to set \globaldefs=1 (its value will be restored
to zero as usual when the group ends at @end tex, so it won’t cause problems with the rest
of the document).

As an example, here is a displayed equation written in plain TEX:

@tex

$$ \chi^2 = \sum_{i=1}^N

\left (y_i - (a + b x_i)

\over \sigma_i\right)^2 $$

@end tex

The output of this example will appear only in a printed manual. If you are reading this in
a format not generated by TEX, you will not see the equation that appears in the printed
manual.

χ2 =
N∑
i=1

(
yi − (a+ bxi)

σi

)2

Analogously, you can use @html ... @end html for a region of raw HTML, @docbook
... @end docbook for a region of raw DocBook, @latex ... @end latex for a region of raw
LATEX, and @xml ... @end xml for a region of raw XML.

Chapter 15: Conditionally Visible Text 137

The behavior of newlines in raw regions is unspecified.

In all cases, in raw processing, @ retains the same meaning as in the remainder of the
document. Thus, the Texinfo processors must recognize and even execute, to some extent,
the contents of the raw regions, regardless of the final output format. Therefore, specifying
changes that globally affect the document inside a raw region leads to unpredictable and
generally undesirable behavior. For example, using the @kbdinputstyle command inside a
raw region is undefined. The remedy is simple: don’t do that.

15.4 Inline Conditionals: @inline, @inlineifelse, @inlineraw

Texinfo provides a set of conditional commands with arguments given within braces:

@inlinefmt{format, text}
Process the Texinfo text if format output is being generated.

@inlinefmtifelse{format, then-text, else-text}
Process the Texinfo then-text if format output is being generated; otherwise,
process else-text.

@inlineraw{format, text}
Similar, but for raw text (see Section 15.3 [Raw Formatter Commands],
page 136).

The supported format names are:

docbook html info latex plaintext tex xml

For example,

@inlinefmt{html, @emph{HTML-only text}}

is nearly equivalent to

@ifhtml

@emph{HTML-only text}

@end ifhtml

except that no whitespace is added, as happens in the latter (environment) case.

In these commands, whitespace is ignored after the comma separating the arguments, as
usual, but is not ignored at the end of text.

To insert a literal at sign, left brace, or right brace in one of the arguments, you must
use the alphabetic commands @atchar{} (see Section 11.1.1 [Inserting an Atsign], page 98),
and @lbracechar{} or @rbracechar{} (see Section 11.1.2 [Inserting Braces], page 98), or
the parsing will become confused.

With @inlinefmtifelse, it is also necessary to use @comma{} to avoid mistaking a ‘,’
in the text for the delimiter. With @inlinefmt and @inlineraw, @comma{} is not required
(though it’s fine to use it), since these commands always have exactly two arguments.

For TEX, the processed text cannot contain newline-delimited commands. Text to be
ignored (i.e., for non-TEX) can, though.

Two other @inline... conditionals complement the @ifset and @ifclear commands;
see the next section.

Chapter 15: Conditionally Visible Text 138

15.5 Flags: @set, @clear, conditionals, and @value

You can direct the Texinfo formatting commands to format or ignore parts of a Texinfo file
with the @set, @clear, @ifset, and @ifclear commands. Here is a summary:

@set flag [value]
Set the variable flag, to the optional value if specified.

@clear flag
Undefine the variable flag, whether or not it was previously defined.

@ifset flag
If flag is set, text through the next @end ifset command is formatted. If flag
is clear, text through the following @end ifset command is ignored.

@inlineifset{flag, text}
Brace-delimited version of @ifset.

@ifclear flag
If flag is set, text through the next @end ifclear command is ignored. If flag
is clear, text through the following @end ifclear command is formatted.

@inlineifclear{flag, text}
Brace-delimited version of @ifclear.

15.5.1 @set and @value

You use the @set command to specify a value for a flag, which is later expanded by the
@value command.

A flag (aka variable) name is an identifier starting with an alphanumeric, ‘-’, or ‘_’.
Subsequent characters, if any, may not be whitespace, ‘@’, braces, angle brackets, or any of
‘~`^+|’; other characters, such as ‘%’, may work. However, it is best to use only letters and
numerals in a flag name, not ‘-’ or ‘_’ or others—they will work in some contexts, but not
all, due to limitations in TEX.

The value is the remainder of the input line, and can contain anything.

Write the @set command like this:

@set foo This is a string.

This sets the value of the flag foo to “This is a string.”.

The Texinfo processors then replace a @value{flag} command with the string to which
flag is set. Thus, when foo is set as shown above, the Texinfo processors convert this:

@value{foo}

to this:
This is a string.

You can write a @value command within a paragraph; but you must write a @set

command on a line of its own.

If you write the @set command like this:

@set foo

without specifying a string, the value of foo is the empty string.

Chapter 15: Conditionally Visible Text 139

If you clear a previously set flag with @clear flag , a subsequent @value{flag} command
will report an error.

For example, if you set foo as follows:

@set howmuch very, very, very

then the processors transform

It is a @value{howmuch} wet day.

into
It is a very, very, very wet day.

If you write

@clear howmuch

then the processors transform

It is a @value{howmuch} wet day.

into
It is a {No value for "howmuch"} wet day.

@value cannot be reliably used as the argument to an accent command (see Section 11.4
[Inserting Accents], page 103). For example, this fails:

@set myletter a

@'@value{myletter}

15.5.2 @ifset and @ifclear

When a flag is set, the Texinfo formatting commands format text between subsequent pairs
of @ifset flag and @end ifset commands. When the flag is cleared, the Texinfo formatting
commands do not format the text. @ifclear operates analogously.

Write the conditionally formatted text between @ifset flag and @end ifset commands,
like this:

@ifset flag
conditional-text
@end ifset

For example, you can create one document that has two variants, such as a manual for a
‘large’ and ‘small’ model:

You can use this machine to dig up shrubs

without hurting them.

@set large

@ifset large

It can also dig up fully grown trees.

@end ifset

Remember to replant promptly ...

In the example, the formatting commands will format the text between @ifset large and
@end ifset because the large flag is set.

When flag is cleared, the Texinfo formatting commands do not format the text between
@ifset flag and @end ifset; that text is ignored and does not appear in the output.

Chapter 15: Conditionally Visible Text 140

For example, if you clear the flag of the preceding example by writing an @clear large

command after the @set large command (but before the conditional text), then the Texinfo
formatting commands ignore the text between the @ifset large and @end ifset commands.
In the formatted output, that text does not appear; you see only the lines that say, “You can
use this machine to dig up shrubs without hurting them. Remember to replant promptly
. . . ”.

If a flag is cleared with a @clear flag command, then the formatting commands format
text between subsequent pairs of @ifclear and @end ifclear commands. But if the flag is
set with @set flag , then the formatting commands do not format text between an @ifclear

and an @end ifclear command; rather, they ignore that text. An @ifclear command
looks like this:

@ifclear flag

15.5.3 @inlineifset and @inlineifclear

@inlineifset and @inlineifclear provide brace-delimited alternatives to the @ifset

and @ifclear forms, similar to the other @inline... Commands (see Section 15.4 [Inline
Conditionals], page 137). The same caveats about argument parsing given there apply here
too.

@inlineifset{var, text}
Process the Texinfo text if the flag var is defined.

@inlineifclear{var, text}
Process the Texinfo text if the flag var is not defined.

Except for the syntax, their general behavior and purposes is the same as with @ifset

and @ifclear, described in the previous section.

15.5.4 @value Example

You can use the @value command to minimize the number of places you need to change
when you record an update to a manual. See Section C.1 [GNU Sample Texts], page 247,
for the full text of an example of using this to work with Automake distributions.

This example is adapted from The GNU Make Manual.

1. Set the flags:

@set EDITION 0.35 Beta

@set VERSION 3.63 Beta

@set UPDATED 14 August 1992

@set UPDATE-MONTH August 1992

2. Write text for the @copying section (see Section 2.7.1 [@copying], page 17):

Chapter 15: Conditionally Visible Text 141

@copying

This is Edition @value{EDITION},

last updated @value{UPDATED},

of @cite{The GNU Make Manual},

for @code{make}, version @value{VERSION}.

Copyright ...

Permission is granted ...

@end copying

3. Write text for the title page, for people reading the printed manual:

@titlepage

@title GNU Make

@subtitle A Program for Directing Recompilation

@subtitle Edition @value{EDITION}, ...

@subtitle @value{UPDATE-MONTH}

@page

@insertcopying

...

@end titlepage

(On a printed cover, a date listing the month and the year looks less fussy than a date
listing the day as well as the month and year.)

4. Write text for the Top node, for people reading the Info file:

@ifnottex

@node Top

@top Make

This is Edition @value{EDITION},

last updated @value{UPDATED},

of @cite{The GNU Make Manual},

for @code{make}, version @value{VERSION}.

@end ifnottex

After you format the manual, the @value constructs have been expanded, so the output
contains text like this:

This is Edition 0.35 Beta, last updated 14 August 1992,

of `The GNU Make Manual', for `make', Version 3.63 Beta.

When you update the manual, you change only the values of the flags; you do not need
to edit the three sections.

15.6 Testing for Texinfo Commands: @ifcommanddefined,
@ifcommandnotdefined

Occasionally, you may want to arrange for your manual to test if a given Texinfo command is
available and (presumably) do some sort of fallback formatting if not. There are conditionals
@ifcommanddefined and @ifcommandnotdefined to do this. For example:

@ifcommanddefined node

Chapter 15: Conditionally Visible Text 142

Good, @samp{@@node} is defined.

@end ifcommanddefined

will output the expected ‘Good, ‘@node’ is defined.’.

This conditional will also consider any new commands defined by the document via
@macro, @alias, @definfoenclose, and @def(code)index (see Chapter 16 [Defining New
Texinfo Commands], page 144) to be true. Caveat: the TEX implementation reports internal
TEX commands, in addition to all the Texinfo commands, as being “defined”; the texi2any
implementation is reliable in this regard, however.

You can check the NEWS file in the Texinfo source distribution and linked from the Texinfo
home page (http://www.gnu.org/software/texinfo) to see when a particular command
was added.

These command-checking conditionals themselves were added in Texinfo 5.0, released in
2013—decades after Texinfo’s inception. In order to test if they themselves are available,
the predefined flag txicommandconditionals can be tested, like this:

@ifset txicommandconditionals

@ifcommandnotdefined foobarnode

(Good, @samp{@@foobarnode} is not defined.)

@end ifcommandnotdefined

@end ifset

Since flags (see the previous section) were added early in the existence of Texinfo, there
is no problem with assuming they are available.

We recommend avoiding these tests whenever possible—which is usually the case. For
many software packages, it is reasonable for all developers to have a given version of Texinfo
(or newer) installed, and thus no reason to worry about older versions. (It is straightforward
for anyone to download and install the Texinfo source; it does not have any problematic
dependencies.)

The issue of Texinfo versions does not generally arise for end users. With properly
distributed packages, users need not process the Texinfo manual simply to build and install
the package; they can use preformatted Info (or other) output files. This is desirable in
general, to avoid unnecessary dependencies between packages (see Section “Releases” in
GNU Coding Standards).

15.7 Conditional Nesting

Texinfo requires that for a failing conditional, the ignored text must be properly nested with
respect to that failing conditional. Here’s an example:

@ifset somevar

@ifset anothervar

Both somevar and anothervar are set.

@end ifset

@ifclear anothervar

Somevar is set, anothervar is not.

@end ifclear

@end ifset

If ‘somevar’ is not set, the whole block is skipped.

http://www.gnu.org/software/texinfo

Chapter 15: Conditionally Visible Text 143

To allow the processors to reliably determine which commands to consider for nesting
purposes, all conditional commands must be on lines by themselves, with no text (even
spaces) before or after.

144

16 Defining New Texinfo Commands

Texinfo provides several ways to define new commands (in all cases, it’s not recommended
to try redefining existing commands):

• A Texinfo macro allows you to define a new Texinfo command as any sequence of text
and/or existing commands (including other macros). The macro can have any number
of parameters—text you supply each time you use the macro.

Incidentally, these macros have nothing to do with the @defmac command, which is
for documenting macros in the subject area of the manual (see Section 13.1 [Def Cmd
Template], page 118).

• ‘@linemacro’ allows you to define a macro whose arguments extend to the end of the
line and are separated by spaces.

• ‘@alias’ defines a new name for an existing command.

• ‘@definfoenclose’ allows you to define new commands with customized output for
some non-printed output formats. This command is deprecated.

Most generally of all (not just for defining new commands), it is possible to invoke any
external macro processor and have Texinfo recognize so-called #line directives for error
reporting.

If you want to do simple text substitution, @set and @value is the simplest approach
(see Section 15.5 [@set @clear @value], page 138).

16.1 Defining Macros

You use the Texinfo @macro command to define a macro, like this:

@macro macroname{param1, param2, ...}

text ... \param1\ ...

@end macro

The parameters param1, param2, . . . correspond to arguments supplied when the macro
is subsequently used in the document (described in the next section).

In principle, macroname should consist of alphanumerics, and (except as the first charac-
ter) ‘-’. The ‘_’ character is excluded so that macros can be called inside @math without a
following space (see Section 11.7 [Inserting Math], page 106). However, for a macro to work
consistently with TEX, macroname must consist entirely of letters: no digits, hyphens, or
other special characters. So, we recommend using only letters. Texinfo commands should
not be redefined as macros.

If a macro needs no parameters, you can define it either with an empty list (‘@macro foo

{}’) or with no braces at all (‘@macro foo’).

The definition or body of the macro can contain most Texinfo commands, including
macro invocations. However, a macro definition that defines another macro does not work
in TEX due to limitations in the design of @macro.

In the macro body, instances of a parameter name surrounded by backslashes, as in
‘\param1\’ in the example above, are replaced by the corresponding argument from the
macro invocation. You can use parameter names any number of times in the body, including
zero.

Chapter 16: Defining New Texinfo Commands 145

To get a single ‘\’ in the macro expansion, use ‘\\’. Any other use of ‘\’ in the body
yields a warning.

The newline characters after the @macro line and before the @end macro line are ignored,
that is, not included in the macro body. All other whitespace is treated according to the
usual Texinfo rules.

To allow a macro to be used recursively, that is, in an argument to a call to itself, you
must define it with ‘@rmacro’, like this:

@rmacro rmac {arg}

a\arg\b

@end rmacro

...

@rmac{1@rmac{text}2}

This produces the output ‘a1atextb2b’. With ‘@macro’ instead of ‘@rmacro’, an error
message is given.

You can undefine a macro foo with @unmacro foo. It is not an error to undefine a macro
that is already undefined. For example:

@unmacro foo

16.2 Invoking Macros

After a macro is defined (see the previous section), you can invoke (use) it in your document
like this:

@macroname {arg1, arg2, ...}

and the result will be more or less as if you typed the body of macroname at that spot. For
example:

@macro foo {p, q}

Together: \p\ & \q\.

@end macro

@foo{a, b}

produces:

Together: a & b.

Thus, the arguments and parameters are separated by commas and delimited by braces;
any whitespace after (but not before) a comma is ignored. The braces are required in
the invocation even when the macro takes no arguments, consistent with other Texinfo
commands. For example:

@macro argless {}

No arguments here.

@end macro

@argless{}

produces:

No arguments here.

Passing macro arguments containing commas requires care, since commas also separate
the arguments. To include a comma character in an argument, the most reliable method
is to use the @comma{} command. Another method is to surround the argument with

Chapter 16: Defining New Texinfo Commands 146

‘@asis{...}’. For texi2any, you can also prepend a backslash character, as in ‘\,’, but
this does not work with TEX.

It’s not always necessary to worry about commas. To facilitate use of macros, two rules
for automatic quoting are implemented:

1. If a macro takes only one argument, all commas in its invocation are quoted by default.
For example:

@macro TRYME{text}

@strong{TRYME: \text\}

@end macro

@TRYME{A nice feature, though it can be dangerous.}

will produce the following output

TRYME: A nice feature, though it can be dangerous.

And indeed, it can. Namely, there is no control on the number of arguments passed to
one-argument macros, so be careful when you invoke them.

2. If a macro invocation includes another command (including a recursive invocation of
itself), any commas in the nested command invocation(s) are quoted by default. For
example, in

@say{@strong{Yes, I do}, person one}

the comma after ‘Yes’ is implicitly quoted. Here’s another example, with a recursive
macro:

@rmacro cat{a,b}

\a\\b\

@end rmacro

@cat{@cat{foo, bar}, baz}

will produce the string ‘foobarbaz’.

3. Otherwise, a comma should be explicitly quoted, as above, for it to be treated as a part
of an argument.

The backslash itself can be quoted in macro arguments with another backslash. For
example:

@macname {\\bleh}

will pass the argument ‘\bleh’ to macname.

texi2any also recognizes ‘\{’ and ‘\}’ sequences for curly braces, but these are not
recognized by the implementation in TEX. There should, however, rarely be a need for these,
as they are only needed when a macro argument contains unbalanced braces.

If a macro is defined to take exactly one argument, it can be invoked without any braces,
taking all of the line after the macro name as the argument. For example:

@macro bar {p}

Twice: \p\ & \p\.

@end macro

@bar aah

Chapter 16: Defining New Texinfo Commands 147

produces:

Twice: aah & aah.

In these arguments, there is no escaping of special characters, so each ‘\’ stands for itself.

If a macro is defined to take more than one argument, but is called with only one (in
braces), the remaining arguments are set to the empty string, and no error is given. For
example:

@macro addtwo {p, q}

Both: \p\\q\.

@end macro

@addtwo{a}

produces simply:

Both: a.

16.3 Macro Details and Caveats

By design, macro expansion should not happen in the following contexts:

• @macro and @unmacro lines;

• @if... lines, including @ifset and similar;

• @set, @clear, @value;

• @clickstyle lines;

• @end lines when there is no macro expansion in the block command.

Unfortunately, TEX may do some expansion in these situations, possibly yielding errors.

Also, quite a few macro-related constructs cause problems with TEX; some of the caveats
are listed below. Thus, if you get macro-related errors when producing the printed version
of a manual, you might try expanding the macros with texi2any by invoking texi2dvi

with the ‘-E’ option (see [Format with texi2dvi], page 157). Or, more reliably, eschew
Texinfo macros altogether and use a language designed for macro processing, such as M4
(see Section 16.7 [External Macro Processors], page 153).

• As mentioned earlier, macro names must consist entirely of letters.

• It is not advisable to redefine any TEX primitive, plain, or Texinfo command name as a
macro. Unfortunately, this is a large and open-ended set of names, and the possible
resulting errors are unpredictable.

• Arguments to macros taking more than one argument cannot cross lines.

• Macros containing a command which must be on a line by itself, such as a conditional,
cannot be invoked in the middle of a line. Similarly, macros containing line-oriented
commands or text, such as @example environments, may behave unpredictably in TEX.

• Texinfo commands in the expansion of a macro in the text of an index entry may end
up being typeset as literal text (including an “@” sign), instead of being interpreted
with their intended meaning.

• White space is ignored at the beginnings of lines.

• Macros can’t be reliably used in the argument to accent commands (see Section 11.4
[Inserting Accents], page 103).

Chapter 16: Defining New Texinfo Commands 148

• The backslash escape for commas in macro arguments does not work; @comma{} must
be used.

• Ending a macro body with ‘@c’ may cause text following the macro invocation to be
ignored as a comment in texi2any. This is not the case when processing with TEX.
This was often done to “comment out” an unwanted newline at the end of a macro
body, but this is not necessary any more, as the final newline before ‘@end macro’ is
not included in the macro body anyway.

• In general, you can’t arbitrarily substitute a macro (or @value) call for Texinfo command
arguments, even when the text is the same. Texinfo is not M4 (or even plain TEX). It
might work with some commands, it fails with others. Best not to do it at all. For
instance, this fails:

@macro offmacro

off

@end macro

@headings @offmacro

This looks equivalent to @headings off, but for TEXnical reasons, it fails with a myste-
rious error message (namely, ‘Paragraph ended before @headings was complete’).

• Expanding macros in a math context may lead to poor spacing in TEX output. For
example:

@iftex

@macro atan

\\mathop{\\rm atan}

@end macro

@end iftex

@math{@atan{}(x)}

The braces following ‘@atan’ are treated by TEX as a subformula, leading to extra space
before the opening parenthesis. You can work around this by defining a raw TEX macro
instead:

@tex

\gdef\atan#1{\mathop{\rm atan}}

@end tex

The ‘#1’ in this definition absorbs the braces, so that the spacing is as expected for the
\mathop object.

• If you have problems using conditionals within a macro, an alternative is to use separate
macro definitions inside conditional blocks. For example, instead of

@macro Mac

@iftex

text for TeX output

@end iftex

@ifnottex

text for not TeX output

@end ifnottex

@end macro

Chapter 16: Defining New Texinfo Commands 149

you can do the following instead:

@iftex

@macro Mac

text for TeX output

@end macro

@end iftex

@ifnottex

@macro Mac

text for not TeX output

@end macro

@end ifnottex

• Macros cannot define macros in the natural way. To do this, you must use conditionals
and raw TEX. For example:

@ifnottex

@macro ctor {name, arg}

@macro \name\

something involving \arg\ somehow

@end macro

@end macro

@end ifnottex

@tex

\gdef\ctor#1{\ctorx#1,}

\gdef\ctorx#1,#2,{\def#1{something involving #2 somehow}}

@end tex

The following limitations are by design:

• If you want to pass an argument with the Texinfo command @, (to produce a cedilla,
see Section 11.4 [Inserting Accents], page 103), you have to use @value or another
workaround. Otherwise, the comma may be taken as separating the arguments. With
texi2any, the comma can be escaped by a backslash. With TEX another workaround
need to be used, therefore we recommend using such a workaround.

For example,

@macro mactwo{argfirst, argsecond}

\argfirst\+\argsecond\.

@end macro

@set fc Fran@,cois

@mactwo{@value{fc},}

produces:

François+.

• @verbatim and macros do not mix; for instance, you can’t start a verbatim block
inside a macro and end it outside (see Section 7.5 [@verbatim], page 69). Starting any
environment inside a macro and ending it outside may or may not work, for that matter.

• Macros that completely define macros are ok, but it’s not possible to have incompletely
nested macro definitions. That is, @macro and @end macro (likewise for @rmacro) must

Chapter 16: Defining New Texinfo Commands 150

be correctly paired. For example, you cannot start a macro definition within a macro,
and then end that nested definition outside the macro.

In the makeinfo implementation before Texinfo 5.0, ends of lines from expansion of a
@macro definition did not end an @-command line-delimited argument (@chapter, @center,
etc.). This is no longer the case. For example:

@macro twolines{}

aaa

bbb

@end macro

@center @twolines{}

In the current texi2any, this is equivalent to:

@center aaa

bbb

with just ‘aaa’ as the argument to @center. In the earlier implementation, it would have
been parsed as this:

@center aaa bbb

16.4 ‘@alias new=existing’

The ‘@alias’ command defines a new command to be just like an existing one. This is useful
for defining additional markup names, thus preserving additional semantic information in
the input even though the output result may be the same.

Write the ‘@alias’ command on a line by itself, followed by the new command name, an
equals sign, and the existing command name. Whitespace around the equals sign is optional
and ignored if present. Thus:

@alias new = existing

For example, if your document contains citations for both books and some other media
(movies, for example), you might like to define a macro @moviecite{} that does the same
thing as an ordinary @cite{} but conveys the extra semantic information as well. You’d do
this as follows:

@alias moviecite = cite

Macros do not always have the same effect as aliases, due to vagaries of argument parsing.
Also, aliases are much simpler to define than macros. So the command is not redundant.

Unfortunately, it’s not possible to alias Texinfo environments; for example, @alias
lang=example is an error.

Aliases must not be recursive, directly or indirectly.

It is not advisable to redefine any TEX primitive, plain TEX, or Texinfo command name
as an alias. Unfortunately this is a very large set of names, and the possible resulting errors
from TEX are unpredictable.

Alias identifiers should be the same as for macro names, that is alphanumerics and
(except as the first character) ‘-’. However, with TEX, letters only should be used. So, we
recommend using only letters.

Chapter 16: Defining New Texinfo Commands 151

16.5 Line Macros

You can also define a macro using the ‘@linemacro’ command. The syntax for line macro
definitions is similar to that for @macro.

However, the syntax for using a macro defined this way is different. The macro call uses
the rest of the line, with arguments separated by spaces. The line macro facility is mainly
intended to allow you to define commands that operate similarly to the builtin commands
for providing definitions (see Chapter 13 [Definition Commands], page 118).

For example:

@linemacro defbuiltin {name, args}

@defline {Builtin} \name\ \args\

@end linemacro

The above macro may be used as

@defblock

@defbuiltin foo (bar)

Explanation

@end defblock

This produces the following result:

[Builtin]foo (bar)
Explanation

Here the first argument is ‘foo’, and is substituted where ‘\name\’ appears in the macro
body. Likewise, ‘(bar)’ is substituted for ‘\args\’.

You can include spaces in a macro argument by surrounding the argument by braces. Any
pair of braces enclosing an argument is removed before substitution. Any empty arguments
(including the last one) must be given as ‘{}’. Additionally, non-initial spaces may appear
in the final argument in the argument list without surrounding braces (as in the example
below).

If an argument line for a line macro ends in a ‘@’ character, then this character together
with the following newline are included in a macro argument, and the following line in the
input file is also used to get the arguments for the macro. Note that any substitution of the
‘@<newline>’ sequence must be in a valid context, such as a definition line (see Section 13.2
[Def Cmd Continuation Lines], page 119).

Another example:

@linemacro deffunc {type, name, args}

@findex \name\

@deftypeline {Func} {\type\} \name\ \args\

@end linemacro

@defblock

@deffunc {long int} F (int @var{one}, int @var{two}, @

int @var{three}, int @var{four}, int @var{five})

Explanation

@end defblock

Chapter 16: Defining New Texinfo Commands 152

Note how braces are needed around ‘\type\’ in the macro body in case the type argument
contains a space. This example produces the output below and enters an index entry for F.

[Func]long int F (int one, int two, int three, int four, int five)
Explanation

Line macros produce a whole number of lines of output in their expansion. There may be
better compatibility between the Texinfo processors (texi2any and TEX with texinfo.tex)
for macros defined with @linemacro than for those defined with @macro.

16.6 @definfoenclose: Customized Highlighting

An @definfoenclose command may be used to define a highlighting command for online
output formats. A command defined using @definfoenclose marks text by enclosing it in
strings that precede and follow the text.

In practice, there is little use for this command, and we do not recommend you use it.
Support for @definfoenclose may be removed in future releases of Texinfo.

Write a @definfoenclose command at the beginning of a line followed by three comma-
separated arguments. The first argument to @definfoenclose is the @-command name
(without the @); the second argument is the start delimiter string; and the third argument
is the end delimiter string. The latter two arguments enclose the highlighted text in the
output.

A delimiter string may contain spaces. Neither the start nor end delimiter is required.
If you do not want a start delimiter but do want an end delimiter, you must follow the
command name with two commas in a row; otherwise, the end delimiter string you intended
will naturally be (mis)interpreted as the start delimiter string.

An enclosure command defined this way takes one argument in braces, since it is intended
for new markup commands (see Chapter 6 [Marking Text], page 55).

For example, you can write:

@definfoenclose phoo,//,\\

near the beginning of a Texinfo file to define @phoo as an Info and HTML formatting
command that inserts ‘//’ before and ‘\\’ after the argument to @phoo. You can then write
@phoo{bar} wherever you want ‘//bar\\’ highlighted in Info and HTML.

For TEX formatting, you could write

@iftex

@alias phoo = i

@end iftex

to define @phoo as a command that causes TEX to typeset the argument to @phoo in italics.

Each definition applies to its own formatter: one for TEX, the other for online formats.
The TEX definitions need to be in ‘@iftex’. @definfoenclose command need not be within
‘@ifinfo’ unless you want to use different definitions for different online output formats.
@definfoenclose defined commands have no effect in DocBook and LATEX output, their
argument is output as-is. An @alias could also be used for these formats.

@definfoenclose definitions must not be recursive, directly or indirectly.

Chapter 16: Defining New Texinfo Commands 153

16.7 External Macro Processors: Line Directives

Texinfo macros (and its other text substitution facilities) work fine in straightforward cases.
If your document needs unusually complex processing, however, their fragility and limitations
can be a problem. In this case, you may want to use a different macro processor altogether,
such as M4 (see M4) or CPP (see The C Preprocessor).

With one exception, Texinfo does not need to know whether its input is “original” source
or preprocessed from some other source file. Therefore, you can arrange your build system
to invoke whatever programs you like to handle macro expansion or other preprocessing
needs. Texinfo does not offer built-in support for any particular preprocessor, since no one
program seemed likely to suffice for the requirements of all documents.

The one exception is line numbers in error messages. In that case, the line number should
refer to the original source file, whatever it may be. There’s a well-known mechanism for
this: the so-called ‘#line’ directive. Texinfo supports this.

16.7.1 ‘#line’ Directive

An input line such as this:

#line 100 "foo.ptexi"

indicates that the next line was line 100 of the file foo.ptexi, and so that’s what an error
message should refer to. Both M4 (see Section “Preprocessor features” in GNU M4) and
CPP (see Section “Line Control” in The C Preprocessor, and Section “Preprocessor Output”
in The C Preprocessor) can generate such lines.

The texi2any program recognizes these lines by default, except within @verbatim blocks
(see Section 7.5 [@verbatim], page 69). Their recognition can be turned off completely
with CPP_LINE_DIRECTIVES (see Section 19.4.8 [Other Customization Variables], page 183),
though there is normally no reason to do so.

For those few programs (M4, CPP, Texinfo) which need to document ‘#line’ directives
and therefore have examples which would otherwise match the pattern, the command
@hashchar{} can be used (see Section 11.1.5 [Inserting a Hashsign], page 99). The example
line above looks like this in the source for this manual:

@hashchar{}line 100 "foo.ptexi"

The @hashchar command was added to Texinfo in 2013. If you don’t want to rely on it,
you can also use @set and @value to insert the literal ‘#’:

@set hash #

@value{hash}line 1 "example.c"

Or, if suitable, a @verbatim environment can be used instead of @example. As mentioned
above, #line-recognition is disabled inside verbatim blocks.

16.7.2 ‘#line’ and TEX

As mentioned, texi2any recognizes the ‘#line’ directives described in the previous section.
However, texinfo.tex does not and cannot. Therefore, such a line will be incorrectly
typeset verbatim if TEX sees it. The solution is to use texi2any’s macro expansion options
before running TEX. There are three approaches:

• If you run texi2dvi or its variants (see [Format with texi2dvi], page 157), you can
pass -E and texi2dvi will run texi2any first to expand macros and eliminate ‘#line’.

Chapter 16: Defining New Texinfo Commands 154

• If you run texi2any, you can specify --no-ifinfo --iftex -E somefile.out, and
then give somefile.out to texi2dvi in a separate command.

• Or you can run texi2any --dvi --Xopt -E. (Or --pdf instead of --dvi.) texi2any

will then call texi2dvi -E.

One last caveat regarding use with TEX: since the #line directives are not recognized,
the line numbers emitted by the @errormsg{} command (see Section 15.1 [Conditional
Commands], page 134), or by TEX itself, are the (incorrect) line numbers from the derived
file which TEX is reading, rather than the preprocessor-specified line numbers.

16.7.3 ‘#line’ Syntax Details

Syntax details for the ‘#line’ directive: the ‘#’ character can be preceded or followed by
whitespace, the word ‘line’ is optional, and the file name can be followed by a whitespace-
separated list of integers (these are so-called “flags” output by CPP in some cases). For those
who like to know the gory details, the actual (Perl) regular expression which is matched is
this:

/^\s*#\s*(line)? (\d+)(("([^"]+)")(\s+\d+)*)?\s*$/

As far as we’ve been able to tell, the trailing integer flags only occur in conjunction with
a file name, so that is reflected in the regular expression.

As an example, the following is a syntactically valid ‘#line’ directive, meaning line 1 of
/usr/include/stdio.h:

1 "/usr/include/stdio.h" 2 3 4

Unfortunately, the quoted file name (‘"..."’) has to be optional, because M4 (especially)
can often generate ‘#line’ directives within a single file. Since the ‘line’ is also optional,
the result is that lines might match which you wouldn’t expect, e.g.,

1

The possible solutions are described above (see Section 16.7.1 [‘#line’ Directive],
page 153).

155

17 Include Files

When a Texinfo processor sees an @include command in a Texinfo file, it processes the
contents of the file named by the @include and incorporates them into the output files
being created. Include files thus let you keep a single large document as a collection of
conveniently small parts.

17.1 How to Use Include Files

To include another file within a Texinfo file, write the @include command at the beginning
of a line and follow it on the same line by the name of a file to be included. For example:

@include buffers.texi

@value{var} references are expanded on the @include line. Other than that, the only
@-commands allowed are @@, @{, @} and associated @-commands such as @atchar{}.

An included file should simply be a segment of text that you expect to be included as is
into the overall or outer Texinfo file; it should not contain the standard beginning and end
parts of a Texinfo file. In particular, you should not start an included file with a line saying
‘\input texinfo’; if you do, that text is inserted into the output file literally. Likewise, you
should not end an included file with a @bye command; nothing after @bye is formatted.

In the long-ago past, you were required to write an @setfilename line at the beginning
of an included file, but no longer. Now, it does not matter whether you write such a line. If
an @setfilename line exists in an included file, it is ignored.

GNU Emacs Texinfo mode provides texinfo-multiple-files-update to update node
pointers and master menu with multiple include files. See Section D.5.3 [Update Multiple
Files], page 259.

17.2 Sample File with @include

Here is an example of an outer Texinfo file with @include files within it:

\input texinfo @c -*-texinfo-*-

@settitle Include Example

@node Top

@top Include Example

@include foo.texi

@include bar.texi

@include concept-index.texi

@bye

An included file, such as foo.texi, might look like this:

@node First

@chapter First Chapter

Contents of first chapter ...

Chapter 17: Include Files 156

The full contents of concept-index.texi might be as simple as this:

@node Concept Index

@unnumbered Concept Index

@printindex cp

The outer Texinfo source file for The GNU Emacs Lisp Reference Manual is named
elisp.texi. This outer file has already contained a master menu with 417 entries and a
list of 41 @include files.

17.3 @verbatiminclude file: Include a File Verbatim

You can include the exact contents of a file in the document with the @verbatiminclude

command:

@verbatiminclude filename

The contents of filename is printed in a verbatim environment (see Section 7.5 [@verbatim],
page 69). Generally, the file is printed exactly as it is, with all special characters and
white space retained. No indentation is added; if you want indentation, enclose the
@verbatiminclude within @example (see Section 7.4 [@example], page 68).

@value{var} references are expanded on the @verbatiminclude line. This makes it
possible to include files in other directories within a distribution, for instance:

@verbatiminclude @value{top_srcdir}/NEWS

(You still have to get top_srcdir defined in the first place.)

Other than that, the only @-commands allowed are @@, @{, @} and associated @-commands
such as @atchar{}.

For a method on printing the file contents in a smaller font size, see the end of the section
on @verbatim.

157

18 Formatting and Printing with TEX

Running the texi2dvi or texi2pdf command is the simplest way to create printable output.
These commands are installed as part of the Texinfo package.

In more detail, typesetting and printing a Texinfo file is a multi-step process in which
you use the TEX program to create a file for printing (called a DVI or PDF file), and then
print the file. Optionally, you may also create indices using the texindex command after
first running TEX; and then you must run TEX again. texi2dvi takes care of all of this,
running TEX and texindex as needed (see [Format with texi2dvi], page 157).

When you use the shell commands, you can either work directly in the operating system
shell or work within a shell inside GNU Emacs (or some other computing environment). You
can give formatting and printing commands from a shell within GNU Emacs, just like any
other shell command. To create a shell within Emacs, type M-x shell (see Section “Shell”
in The GNU Emacs Manual). If you are using GNU Emacs, you can also use commands
provided by Texinfo mode instead of shell commands. See Section D.7 [Printing with Emacs],
page 263.

For specifing details of the printed output such as paper size, see Appendix E [Global
Document Commands], page 275.

18.1 Use TEX

The typesetting program called TEX is used to format a Texinfo document for printable
output. TEX is a very powerful typesetting program and, when used correctly, does an
exceptionally good job. It is not included in the Texinfo package, being a vast suite of
software in itself.

TEX is a document formatter that is used by the FSF for its documentation. It is the
easiest way to get printed output (e.g., PDF and PostScript) for Texinfo manuals. TeX
is freely redistributable, and you can get it over the Internet or on physical media. See
http://tug.org/texlive.

18.2 Format with texi2dvi or texi2pdf

The texi2dvi program takes care of all the steps for producing a TEX DVI file from a
Texinfo document. Similarly, texi2pdf produces a PDF file1.

To run texi2dvi or texi2pdf on an input file foo.texi, do this (where ‘prompt$ ’ is
your shell prompt):

prompt$ texi2dvi foo.texi

prompt$ texi2pdf foo.texi

As shown in this example, the file names given to texi2dvi and texi2pdf must include
any extension, such as ‘.texi’.

For a list of all the options, run ‘texi2dvi --help’. Some of the options are discussed
below.

1 PDF stands for ‘Portable Document Format’. It was invented by Adobe Systems for document inter-
change, based on their PostScript language.

http://tug.org/texlive

Chapter 18: Formatting and Printing with TEX 158

With the --pdf option, texi2dvi produces PDF output instead of DVI, by running
pdftex instead of tex. Alternatively, the command texi2pdf is an abbreviation for running
‘texi2dvi --pdf’. The command pdftexi2dvi is also provided as a convenience for AUC-
TEX (see AUC-TEX), as it prefers to merely prepend ‘pdf’ to DVI producing tools to have
PDF producing tools.

With the --dvipdf option, texi2dvi produces PDF output by running TEX and then a
DVI-to-PDF program: if the DVIPDF environment variable is set, that value is used, else the
first program extant among dvipdfmx, dvipdfm, dvipdf, dvi2pdf, dvitopdf. This method
generally supports CJK typesetting better than pdftex.

With the --ps option, texi2dvi produces PostScript instead of DVI, by running tex

and then dvips (see Dvips). (Or the value of the DVIPS environment variable, if set.)

texi2dvi can also be used to process LATEX files. Normally texi2dvi is able to guess
the input file language by its contents and file name extension; however, if it guesses wrong
you can explicitly specify the input language using --language=lang command line option,
where lang is either ‘latex’ or ‘texinfo’.

One useful option to texi2dvi is ‘--command=cmd’. This inserts cmd on a line by itself at
the start of the file in a temporary copy of the input file, before running TEX. With this, you
can specify different printing formats, such as @smallbook (see Section E.6 [@smallbook],
page 281), @afourpaper (see Section E.7 [A4 Paper], page 281), or @pagesizes (see Sec-
tion E.8 [@pagesizes], page 281), without actually changing the document source. (You
can also do this on a site-wide basis with texinfo.cnf; see Section 18.5 [Preparing for TEX],
page 162).

The option -E (equivalently, -e and --expand) does Texinfo macro expansion using
texi2any instead of the TEX implementation (see Section 16.3 [Macro Details], page 147).
Each implementation has its own limitations and advantages.

texi2dvi takes the --build=mode option to specify where the TEX compilation takes
place, and, as a consequence, how auxiliary files are treated. The build mode can also be set
using the environment variable TEXI2DVI_BUILD_MODE. The valid values for mode are:

‘local’ Compile in the current directory, leaving all the auxiliary files around. This is
the traditional TeX use.

‘tidy’ Compile in a local *.t2d directory, where the auxiliary files are left. Output
files are copied back to the original file.

Using the ‘tidy’ mode brings several advantages:

- the current directory is not cluttered with plethora of temporary files.

- clutter can be even further reduced using --build-dir=dir: all the *.t2d
directories are stored there.

- clutter can be reduced to zero using, e.g., --build-dir=/tmp/\$USER.t2d
or --build-dir=\$HOME/.t2d.

- the output file is updated after every successful TEX run, for sake of
concurrent visualization of the output. In a ‘local’ build the viewer stops
during the whole TEX run.

- if the compilation fails, the previous state of the output file is preserved.

- PDF and DVI compilation are kept in separate subdirectories preventing
any possibility of auxiliary file incompatibility.

Chapter 18: Formatting and Printing with TEX 159

On the other hand, because ‘tidy’ compilation takes place in another di-
rectory, occasionally TEX won’t be able to find some files (e.g., when using
\graphicspath): in that case, use -I to specify the additional directories to
consider.

‘clean’ Same as ‘tidy’, but remove the auxiliary directory afterwards. Every compilation
therefore requires the full cycle.

texi2dvi will use etex if it is available, because it runs faster in some cases, and provides
additional tracing information when debugging texinfo.tex. Nevertheless, this extended
version of TEX is not required, and the DVI output is identical.

texi2dvi attempts to detect auxiliary files output by TEX, either by using the -recorder
option, or by scanning for ‘\openout’ in the log file that a run of TEX produces. You may
control how texi2dvi does this with the TEXI2DVI_USE_RECORDER environment variable.
Valid values are:

‘yes’ use the -recorder option, no checks.

‘no’ scan for ‘\openout’ in the log file, no checks.

‘yesmaybe’
check whether -recorder option is supported, and if yes use it, otherwise check
for tracing ‘\openout’ in the log file is supported, and if yes use it, else it is an
error.

‘nomaybe’ same as ‘yesmaybe’, except that the ‘\openout’ trace in log file is checked first.

The default is ‘nomaybe’. This environment variable is provided for troubleshooting
purposes, and may change or disappear in the future.

18.3 Format with tex/texindex

You can do the basic formatting of a Texinfo file with the shell command tex followed by
the name of the Texinfo file. For example:

tex foo.texi

TEX will produce a DVI file as well as several auxiliary files containing information for
indices, cross-references, etc. The DVI file (for DeVice Independent file) can be printed on
virtually any device, perhaps after a further conversion (see the previous section).

The tex formatting command itself does not sort the indices; it writes an output file
of unsorted index data. To generate a printed index after running the tex command, you
first need a sorted index to work from. The texindex command sorts indices. (texi2dvi,
described in the previous section, runs tex and texindex as necessary.)

tex outputs unsorted index files under names following a standard convention: the name
of your main input file with any ‘.texi’ or similar extension replaced by the two letter
index name. For example, the raw index output files for the input file foo.texi would be,
by default, foo.cp, foo.vr, foo.fn, foo.tp, foo.pg and foo.ky. Those are exactly the
arguments to give to texindex.

Chapter 18: Formatting and Printing with TEX 160

Instead of specifying all the unsorted index file names explicitly, it’s typical to use ‘??’
as shell wildcards and give the command in this form:

texindex foo.??

This command will run texindex on all the unsorted index files, including any two letter
indices that you have defined yourself using @defindex or @defcodeindex. You can safely
run ‘texindex foo.??’ even if there are files with two letter extensions that are not index
files, such as ‘foo.el’. The texindex command reports but otherwise ignores such files.

For each file specified, texindex generates a sorted index file whose name is made by
appending ‘s’ to the input file name; for example, foo.cps is made from foo.cp. The
@printindex command looks for a file with that name (see Section 10.5 [Printing Indices
& Menus], page 94). TEX does not read the raw index output file, and texindex does not
alter it.

After you have sorted the indices, you need to rerun tex on the Texinfo file. This
regenerates the output file, this time with up-to-date index entries.

Finally, you may need to run tex one more time, to get the page numbers in the
cross-references correct.

To summarize, this is a five-step process. (Alternatively, it’s a one-step process: run
texi2dvi; see the previous section.)

1. Run tex on your Texinfo file. This generates a DVI file (with undefined cross-references
and no indices), and the raw index files (with two letter extensions).

2. Run texindex on the raw index files. This creates the corresponding sorted index files
(with three letter extensions).

3. Run tex again on your Texinfo file. This regenerates the DVI file, this time with indices
and defined cross-references, but with page numbers for the cross-references from the
previous run, generally incorrect.

4. Sort the indices again, with texindex.

5. Run tex one last time. This time the correct page numbers are written for the cross-
references.

To generate PDF, you can run the pdftex program instead of plain tex. That is, run
pdftex foo.texi instead of ‘tex foo.texi’ in the examples above.

18.3.1 Formatting Partial Documents

Sometimes you may wish to print a document while you know it is incomplete, or to
print just one chapter of a document. In such a case, the usual auxiliary files that TEX
creates and warnings TEX gives about undefined cross-references are just nuisances. You can
avoid them with the @novalidate command, which you must give before any sectioning or
cross-reference commands.

Thus, the beginning of your file would look approximately like this:

\input texinfo

@novalidate

...

@novalidate also turns off validation in texi2any, just like its --no-validate option (see
Section 19.1 [Invoking texi2any], page 164).

Chapter 18: Formatting and Printing with TEX 161

Furthermore, you need not run texindex each time after you run tex. The tex formatting
command simply uses whatever sorted index files happen to exist from a previous use of
texindex. If those are out of date, that is usually ok while you are creating or debugging a
document.

18.3.2 Details of texindex

In Texinfo version 6, released in 2015, the texindex program was completely reimplemented.
The principal functional difference is that index entries beginning with a left brace or right
brace (‘{’ resp. ‘}’) can work properly. For example, these simple index entries are processed
correctly, including the “index initial” shown in the index:

@cindex @{

@cindex @}

...

@printindex cp

Although not a matter of functionality, readers may be interested to know
that the new texindex is a literate program (https://en.wikipedia.org/wiki/
Literate_programming) using Texinfo for documentation and (portable) awk for code.
A single source file, texindex/ti.twjr in this case, produces the runnable program, a
printable document, and an online document.

The system is called TexiWeb Jr. and was created by Arnold Robbins, who also wrote
the new texindex. Not coincidentally, he is also the long-time maintainer of gawk (GNU
Awk, see The GNU Awk User’s Guide). The file texindex/Makefile.am shows example
usage of the system.

18.4 Print with lpr from Shell

The way to print a DVI file depends on your system installation. Two common ones are
‘dvips foo.dvi -o’ to make a PostScript file first and then print that, and ‘lpr -d foo.dvi’
to print a DVI file directly.

For example, the following commands will (probably) suffice to sort the indices, format,
and print this manual using the texi2dvi shell script (see [Format with texi2dvi], page 157).

texi2dvi texinfo.texi

dvips texinfo.dvi -o

lpr texinfo.ps

Depending on the lpr setup on your machine, you might be able to combine the last two
steps into lpr -d texinfo.dvi.

You can also generate a PDF file by running texi2dvi instead of texi2dvi; a PDF is
often directly printable. Or you can generate a PCL file by using dvilj instead of dvips, if
you have a printer that prefers that format.

lpr is a standard program on Unix systems, but it is usually absent on MS-DOS/MS-
Windows. If so, just create a PostScript or PDF or PCL file, whatever is most convenient,
and print that in the usual way for your machine (e.g., by sending to the appropriate port,
usually ‘PRN’).

https://en.wikipedia.org/wiki/Literate_programming
https://en.wikipedia.org/wiki/Literate_programming

Chapter 18: Formatting and Printing with TEX 162

18.5 Preparing for TEX

TEX needs to find the texinfo.tex file that the ‘\input texinfo’ command on the first
line reads. The texinfo.tex file tells TEX how to handle @-commands; it is included in all
standard GNU distributions. The latest version released for general use is available from
the usual GNU servers and mirrors:

http://ftp.gnu.org/gnu/texinfo/texinfo.tex

http://ftpmirror.gnu.org/texinfo/texinfo.tex

The latest development version is available from the Texinfo source repository:

http://git.savannah.gnu.org/cgit/texinfo.git/plain/doc/texinfo.tex

texinfo.tex is essentially a standalone file, so, if you need or want to try a newer version
than came with your system, it nearly always suffices to download it and put it anywhere
that TEX will find it. You can replace any existing texinfo.tex with a newer version (of
course saving the original in case of disaster).

Also, you should install epsf.tex, if it is not already installed from another distribution.
More details are at the end of the description of the @image command (see Section 9.2
[Images], page 86).

To use quotation marks other than those used in English, you’ll need to have the
European Computer Modern fonts (e.g., ecrm1000) and (for PDF output) CM-Super fonts
(see Section 11.5 [Inserting Quotation Marks], page 104).

To use the @euro command, you’ll need the ‘feym*’ fonts (e.g., feymr10). See Sec-
tion 11.8.6 [@euro], page 108.

All of the above files should be installed by default in a reasonable TEX installation.

Optionally, you may create a file texinfo.cnf for site configuration. When processing a
Texinfo file, TEX looks for this file in its search path, which includes the current directory
and standard installation directories. You can use this file for local conventions. For example,
if texinfo.cnf contains the line ‘@afourpaper’ (see Section E.7 [A4 Paper], page 281), then
all Texinfo documents will be processed with that page size in effect. If you have nothing to
put in texinfo.cnf, you do not need to create it.

You can set the TEXINPUTS environment variable to allow TEX to find texinfo.cnf.
(This also works for texinfo.tex and any other file TEX might read). For example, if you
are using a Bourne shell-compatible shell (sh, bash, ksh, . . .), your .profile file could
contain the lines:

TEXINPUTS=.:/home/me/mylib:

export TEXINPUTS

These settings would cause TEX first to look for an \input file in the current directory,
indicated by the ‘.’, then in a hypothetical user ‘me’’s mylib directory, and finally in the
system directories. (A leading, trailing, or doubled ‘:’ indicates searching the system
directories at that point.)

18.6 Overfull “hboxes”

TEX is sometimes unable to typeset a line within the normal margins. This most often
occurs when TEX comes upon what it interprets as a long word that it cannot hyphenate,

http://ftp.gnu.org/gnu/texinfo/texinfo.tex
http://ftpmirror.gnu.org/texinfo/texinfo.tex
http://git.savannah.gnu.org/cgit/texinfo.git/plain/doc/texinfo.tex

Chapter 18: Formatting and Printing with TEX 163

such as an electronic mail network address or a very long identifier. When this happens,
TEX prints an error message like this:

Overfull @hbox (20.76302pt too wide)

(In TEX, lines are in “horizontal boxes”, hence the term, “hbox”. ‘@hbox’ is a TEX primitive
not used in the Texinfo language.)

TEX also provides the line number in the Texinfo source file and the text of the offending
line, which is marked at all the places that TEX considered hyphenation. See Section D.10.3
[Debugging with TEX], page 270, for more information about typesetting errors.

If the Texinfo file has an overfull hbox, you can rewrite the sentence so the overfull hbox
does not occur, or you can decide to leave it. A small excursion into the right margin often
does not matter and may not even be noticeable.

If you have many overfull boxes and/or an antipathy to rewriting, you can coerce TEX
into greatly increasing the allowable interword spacing, thus (if you’re lucky) avoiding many
of the bad line breaks, like this:

@tex

\global\emergencystretch = .9\hsize

@end tex

(You should adjust the fraction as needed.) This huge value for \emergencystretch cannot
be the default, since then the typeset output would generally be of noticeably lower quality;
its default value is ‘.15\hsize’. \hsize is the TEX dimension containing the current line
width.

For any overfull boxes you do have, TEX will print a large, ugly, black rectangle beside
the line that contains the overfull hbox unless told otherwise. This is so you will notice the
location of the problem if you are correcting a draft.

To prevent such a monstrosity from marring your final printout, write the following in
the beginning of the Texinfo file on a line of its own, before the @titlepage command:

@finalout

164

19 texi2any: The Translator for Texinfo

texi2any is the generic translator for Texinfo that can produce different output formats
and is highly customizable. It supports these formats:

Info (by default, or with --info),
HTML (with --html),
EPUB 3 (with --epub3),
plain text (with --plaintext),
LATEX (with --latex),
DocBook (with --docbook),
Texinfo XML (with --xml).

makeinfo is an alias for texi2any. By default, both texi2any and makeinfo generate
Info output; indeed, there are no differences in behavior based on the name.

Beside these default formats, command line options to texi2any can change many aspects
of the output. Beyond that, initialization files provide even more control over the final
output—nearly anything not specified in the Texinfo input file. Initialization files are written
in Perl, like the main program, and anything which can be specified on the command line
can also be specified within a initialization file.

19.1 Invoking texi2any from a Shell

To process a Texinfo file, invoke texi2any followed by the name of the Texinfo file. Also
select the format you want to output with the appropriate command line option (default is
Info). Thus, to create the Info file for Bison, type the following to the shell:

texi2any --info bison.texi

You can specify more than one input file name; each is processed in turn. If an input file
name is ‘-’, standard input is read.

The texi2any program accepts many options. Perhaps the most basic are those that
change the output format. By default, texi2any outputs Info.

Each command line option is either a long name preceded by ‘--’ or a single letter
preceded by ‘-’. You can use abbreviations for the long option names as long as they are
unique.

For example, you could use the following shell command to create an Info file for
bison.texi in which lines are filled to only 68 columns:

texi2any --fill-column=68 bison.texi

You can write two or more options in sequence, like this:

texi2any --no-split --fill-column=70 ...

(This would keep the Info file together as one possibly very long file and would also set the
fill column to 70.)

The options are (approximately in alphabetical order):

--commands-in-node-names

This option now does nothing, but remains for compatibility. (It used to ensure
that @-commands in node names were expanded throughout the document,
especially @value. This is now done by default.)

Chapter 19: texi2any: The Translator for Texinfo 165

--conf-dir=dir
Prepend dir to the directory search list for finding customization files that may
be loaded with --init-file (see below). The dir value can be a single directory,
or a list of several directories separated by the usual path separator character
(‘:’ on Unix-like systems, ‘;’ on Windows).

--css-include=file
When producing HTML, literally include the contents of file, which should
contain Cascading Style Sheets specifications, in the ‘<style>’ block of the
HTML output. If file is ‘-’, read standard input. See Section 21.3 [HTML CSS],
page 206.

--css-ref=url
When producing HTML, add a ‘<link>’ tag to the output which references a
cascading style sheet at url. This allows using standalone style sheets.

-D var
-D 'var value'

Cause the Texinfo variable var to be defined. This is equivalent to @set var in
the Texinfo file (see Section 15.5 [@set @clear @value], page 138).

The argument to the option is always one word to the shell; if it contains internal
whitespace, the first word is taken as the variable name and the remainder as the
value. For example, -D 'myvar someval' is equivalent to @set myvar someval.

--docbook

Generate DocBook output (rather than Info).

--document-language=lang
Use lang to translate Texinfo keywords which end up in the output document.
The default is the locale specified by the @documentlanguage command if there
is one, otherwise English (see Section 14.1 [@documentlanguage], page 131).

--dvi Generate a TeX DVI file using texi2dvi, rather than Info (see Section 19.3
[texi2any Printed Output], page 171).

--dvipdf Generate a PDF file using texi2dvi --dvipdf, rather than Info (see Section 19.3
[texi2any Printed Output], page 171).

--enable-encoding

--disable-encoding

By default, or with --enable-encoding, output accented and special characters
in Info and plain text output based on the document encoding. With --disable-

encoding, 7-bit ASCII transliterations are output. Also obeyed in other output
formats for index keys sorting and for some plain text output.

--epub3 Generate EPUB 3 output.

--error-limit=limit
-e limit Report limit errors before aborting (on the assumption that continuing would

be useless); default 100.

--fill-column=width
-f width Specify the maximum number of columns in a line; this is the right-hand edge

of a line. Paragraphs that are filled will be filled to this width. (Filling is the

Chapter 19: texi2any: The Translator for Texinfo 166

process of breaking up and connecting lines so that lines are the same length
as or shorter than the number specified as the fill column. Lines are broken
between words.) The default value is 72.

--footnote-style=style
-s style Set the footnote style to style: either ‘end’ for the end node style (the default)

or ‘separate’ for the separate node style. The value set by this option overrides
the value set in a Texinfo file by a @footnotestyle command (see Section 9.3.2
[Footnote Styles], page 89).

In Info, when the footnote style is ‘separate’, texi2any makes a new node
containing the footnotes found in the current node. When the footnote style is
‘end’, texi2any places the footnote references at the end of the current node.

In HTML, when the footnote style is ‘end’, or if the output is not split, footnotes
are put at the end of the output. If set to ‘separate’, and the output is split,
they are placed in a separate file.

--force

-F Ordinarily, if the input file has errors, the output files are not created. With
this option, they are preserved.

--help

-h Print a message with available options and basic usage, then exit successfully.

--html Generate HTML output (rather than Info). By default, the HTML output
is split into one output file per node, and the split output is written into a
subdirectory based on the name of the input file. See Chapter 21 [Generating
HTML], page 205.

-I dir Append dir to the directory search list for finding files that are included using the
@include command. By default, texi2any searches only the current directory.
If dir is not given, the current directory is appended. The dir value can be
a single directory or a list of several directories separated by the usual path
separator character (‘:’ on Unix-like systems, ‘;’ on Windows).

--ifdocbook

--ifhtml

--ifinfo

--iflatex

--ifplaintext

--iftex

--ifxml For the given format, process ‘@ifformat’ and ‘@format’ commands, and do not
process ‘@ifnotformat’, regardless of the format being output. For instance, if
--iftex is given, then ‘@iftex’ and ‘@tex’ blocks will be read, and ‘@ifnottex’
blocks will be ignored.

Chapter 19: texi2any: The Translator for Texinfo 167

--no-ifdocbook

--no-ifhtml

--no-ifinfo

--no-iflatex

--no-ifplaintext

--no-iftex

--no-ifxml

For the given format, do not process ‘@ifformat’ and ‘@format’ commands, and
do process ‘@ifnotformat’, regardless of the format being output. For instance,
if --no-ifhtml is given, then ‘@ifhtml’ and ‘@html’ blocks will not be read,
and ‘@ifnothtml’ blocks will be.

--info Generate Info output. By default, if the output file contains more than about
300,000 bytes, it is split into shorter subfiles of about that size. The name of
the output file and any subfiles is determined by the input file name, or by
@setfilename, if present (see [Setting the Output File Name], page 13). See
Section 20.2 [Tag and Split Files], page 201.

--init-file=file
Load file as code to modify the behavior and output of the generated manual.
It is customary to use the .pm or the .init extensions for these customization
files, but that is not enforced; the file name can be anything. The --conf-dir
option (see above) can be used to add to the list of directories in which these
customization files are searched for.

--internal-links=file
In HTML mode, output a tab-separated file containing three columns: the
internal link to an indexed item or item in the table of contents, the name of the
index (or table of contents) in which it occurs, and the term which was indexed
or entered. The items are in the natural sorting order for the given element.
This dump can be useful for post-processors.

--latex Generate LATEX output.

--macro-expand=file
-E file Output the Texinfo source, with all Texinfo macros expanded, to file. Normally,

the result of macro expansion is used internally by texi2any and then discarded.

--no-headers

Do not include menus or node separator lines in the output.

When generating Info, this is the same as using --plaintext, resulting in
a simple plain text file. Furthermore, output is to standard output unless
overridden with -o. (This behavior is for backward compatibility.)

When generating HTML, and output is split, also output navigation links only at
the beginning of each file. If output is not split, do not include navigation links
at the top of each node at all. See Chapter 21 [Generating HTML], page 205.

--node-files

--no-node-files

With --node-files, when generating HTML, create redirection files for anchors
and any nodes not already output with the file name corresponding to the node

Chapter 19: texi2any: The Translator for Texinfo 168

name (see Section 21.7.2 [HTML Xref Node Name Expansion], page 211). This
makes it possible for section- and chapter-level cross-manual references to succeed
(see Section 21.7.6 [HTML Xref Configuration], page 214).

If the output is split, this is enabled by default. If the output is not split, --node-
files enables the creation of the redirection files, in addition to the monolithic
main output file. --no-node-files suppresses the creation of redirection files
in any case. This option has no effect with any output format other than HTML.
See Chapter 21 [Generating HTML], page 205.

--no-validate

--no-pointer-validate

Suppress the pointer-validation phase of texi2any—a dangerous thing to do.
This can also be done with the @novalidate command (see Section 18.3.1
[Formatting Partial Documents], page 160).

If you do not suppress pointer validation, texi2any will check the validity of
cross-references and menu entries in the Texinfo file, as well as node pointers if
they are given explicitly.

--no-warn

Suppress warning messages (but not error messages).

--number-footnotes

--no-number-footnotes

With --no-number-footnotes, suppress automatic footnote numbering. By
default, footnotes are numbered sequentially within a node, i.e., the current
footnote number is reset to 1 at the start of each node.

--number-sections

--no-number-sections

With --number-sections (the default), output chapter, section, and appendix
numbers as in printed manuals. This works only with hierarchically structured
manuals. You should specify --no-number-sections if your manual is not
normally structured.

--output=file
-o file Specify that the output should be directed to file. This overrides any file name

specified in a @setfilename command found in the Texinfo source. If neither
@setfilename nor this option are specified, the input file name is used to
determine the output name. See [Setting the Output File Name], page 13.

If file is ‘-’, output goes to standard output and ‘--no-split’ is implied.

If file is a directory or ends with a ‘/’ the usual rules are used to determine the
output file name (namely, use @setfilename or the input file name) but the files
are written to the file directory. For example, ‘texi2any -o bar/ foo.texi’,
with or without --no-split, will write bar/foo.info, and possibly other files,
under bar/.

When generating HTML and output is split, file is used as the name for the
directory into which all files are written. For example, ‘texi2any -o bar --html

foo.texi’ will write bar/index.html, among other files.

Chapter 19: texi2any: The Translator for Texinfo 169

When generating EPUB a container directory for the files and directories needed
for the EPUB format is created, as well as the EPUB output file. If file
corresponds to a directory, the container directory is placed within file. The
EPUB output file is never put in this directory. If file corresponds to a file, it is
used for the EPUB output file name.

--output-indent=val
This option now does nothing, but remains for compatibility. (It used to alter
indentation in XML/DocBook output.)

-P path Prepend path to the directory search list for @include. If path is not given, the
current directory is prepended. See ‘-I’ above.

--paragraph-indent=indent
-p indent Set the paragraph indentation style to indent. The value set by this option

overrides the value set in a Texinfo file by an @paragraphindent command (see
Section E.3 [@paragraphindent], page 280). The value of indent is interpreted
as follows:

‘asis’ Preserve any existing indentation (or lack thereof) at the beginnings
of paragraphs.

‘0’ or ‘none’
Delete any existing indentation.

num Indent each paragraph by num spaces.

The default is to indent by two spaces, except for paragraphs following a section
heading, which are not indented.

--pdf Generate a PDF file using texi2dvi --pdf, rather than Info (see Section 19.3
[texi2any Printed Output], page 171).

--plaintext

Output a plain text file (rather than Info): do not include menus or node
separator lines in the output. This results in a straightforward plain text file
that you can (for example) send in email without complications, or include in a
distribution (for example, an INSTALL file).

With this option the output goes to standard output by default, instead of to
a file with a name based on the input file name or @setfilename; this can be
overridden with -o.

--ps Generate a PostScript file using texi2dvi --ps, rather than Info (see Sec-
tion 19.3 [texi2any Printed Output], page 171).

--set-customization-variable var=value
-c var=value

Set the customization variable var to value. The = is optional, but both var and
value must be quoted to the shell as necessary so the result is a single word. Many
aspects of texi2any behavior and output may be controlled by customization
variables, beyond what can be set in the document by @-commands and with
other command line switches. See Section 19.4 [Customization Variables],
page 172.

Chapter 19: texi2any: The Translator for Texinfo 170

--split=how
--no-split

When generating Info, by default large output files are split into smaller subfiles,
of approximately 300k bytes. When generating HTML, by default each output
file contains one node (see Chapter 21 [Generating HTML], page 205). --no-
split suppresses this splitting of the output.

Alternatively, --split=how may be used to specify at which level the HTML
output should be split. The possible values for how are:

‘chapter’ The output is split at @chapter and other sectioning @-commands
at this level (@appendix, etc.).

‘section’ The output is split at @section and similar.

‘node’ The output is split at every node. This is the default.

Plain text output can be split similarly to HTML. This may be useful for
extracting sections from a Texinfo document and making them available as
separate files.

--split-size=num
Keep Info files to at most num characters if possible; default is 300,000. (However,
a single node will never be split across Info files.)

--transliterate-file-names

Enable transliteration of non-ASCII characters in node names for the purpose of
file name creation. See Section 21.7.4 [HTML Xref 8-bit Character Expansion],
page 213.

-U var Cause var to be undefined. This is equivalent to @clear var in the Texinfo file
(see Section 15.5 [@set @clear @value], page 138).

--verbose

Cause texi2any to display messages saying what it is doing. Normally, texi2any
only outputs messages if there are errors or warnings.

--version

-V Print the version number, then exit successfully.

--Xopt str
Pass str (a single shell word) to texi2dvi; may be repeated (see Section 19.3
[texi2any Printed Output], page 171).

--xml Generate Texinfo XML output (rather than Info).

19.2 Environment Variables Recognized by texi2any

texi2any also reads the environment variable TEXINFO_OUTPUT_FORMAT to determine the
output format, if not overridden by a command line option. The value should be one of:

docbook dvi dvipdf epub3 html info latex pdf plaintext ps xml

If not set or otherwise specified, Info output is the default.

Chapter 19: texi2any: The Translator for Texinfo 171

TEXINFO_OUTPUT_FORMAT may take some other special values, which do not correspond
to any command-line settable output format (see Section 19.4.2 [Customization Variables
and Options], page 173).

The customization variable of the same name is also read; if set, that overrides an envi-
ronment variable setting, but not a command-line option. See Section 19.4.2 [Customization
Variables and Options], page 173.

You can control texi2any’s use of Perl extension modules by setting the TEXINFO_XS

environment variable. These modules are compiled native code that the interpreted Perl
code can use. Ideally, these extension modules should just work, and the only noticeable
difference they should make is that texi2any finishes running sooner. However, you can
use this environment variable for the purposes of troubleshooting: for example, if you have
problems with the output of texi2any varying depending on whether the extension modules
are in use.

The following values of TEXINFO_XS are recognized by texi2any:

‘default’ The default behavior. Try to load extension modules, and silently fall back to
the interpreted Perl implementations if this fails.

‘warn’ Try to load extension modules, and if this fails, give a warning message before
falling back to the interpreted Perl implementations.

‘debug’ Try to load extension modules, printing many messages while doing so.

‘omit’ Do not use extension modules.

Set TEXINFO_XS_PARSER to ‘0’ to disable the use of the native code implementation
of the parser module. This is the part of texi2any that converts Texinfo input into an
internal tree format used for further processing into output formats. This may be useful for
working around bugs or incompatibilities between the native code implementation and the
implementation in pure Perl code.

19.3 texi2any Printed Output

To justify the name Texinfo-to-any, texi2any has basic support for creating printed output
in the various formats: TEX DVI, PDF, and PostScript. This is done via the simple method
of executing the texi2dvi program when those output formats are requested, after checking
the validity of the input to give users the benefit of texi2any’s error checking. If you don’t
want such error checking, perhaps because your manual plays advanced TEX tricks together
with texinfo.tex, just invoke texi2dvi directly.

The output format options for this are --dvi, --dvipdf, --pdf, and --ps. See [Format
with texi2dvi], page 157, for more details on these options and general texi2dvi operation.
In addition, the --verbose, --silent, and --quiet options are passed on if specified; the
-I and -o options are likewise passed on with their arguments, and --debug without its
argument.

The only option remaining that is related to the texi2dvi invocation is --Xopt. Here,
just the argument is passed on and multiple --Xopt options accumulate. This provides a
way to construct an arbitrary command line for texi2dvi. For example, running

texi2any --Xopt -t --Xopt @a4paper --pdf foo.texi

Chapter 19: texi2any: The Translator for Texinfo 172

is equivalent to running

texi2dvi -t @a4paper --pdf foo.texi

except for the validity check.

Although one might wish that other options to texi2any would take effect, they don’t.
For example, running ‘texi2any --no-number-sections --dvi foo.texi’ still results in a
DVI file with numbered sections. (Perhaps this could be improved in the future, if requests
are received.)

The actual name of the command that is invoked is specified by the TEXI2DVI customiza-
tion variable (see Section 19.4.8 [Other Customization Variables], page 183). As you might
guess, the default is ‘texi2dvi’.

texi2any itself does not generate any normal output when it invokes texi2dvi, only
diagnostic messages.

19.4 Customization Variables

Warning: These customization variable names and meanings may change in any
Texinfo release. We always try to avoid incompatible changes, but we cannot
absolutely promise, since needs change over time.

Many aspects of the behavior and output of texi2any may be modified by modifying
so-called customization variables. These fall into a few general categories:

• Those associated with @-commands; for example, @documentlanguage.

• Those associated with command-line options; for example, the customization variable
SPLIT is associated with the --split command-line option, and TEXINFO_OUTPUT_

FORMAT allows specifying the output format.

• Those associated with customizing the HTML output.

• Other ad hoc variables.

Customization variables may set on the command line using --set-customization-

variable 'var value' (quoting the variable/value pair to the shell) or --set-

customization-variable var=value (using =). A special value is ‘undef’, which sets the
variable to this special “undefined” Perl value.

The sections below give the details for each of these.

19.4.1 Customization Variables for @-Commands

Each of the following @-commands has an associated customization variable with the same
name (minus the leading @):

@afivepaper @afourpaper @afourlatex

@afourwide @allowcodebreaks @bsixpaper

@contents @clickstyle @codequotebacktick

@codequoteundirected @deftypefnnewline @documentdescription

@documentencoding @documentlanguage @evenfooting

@evenfootingmarks @evenheading @evenheadingmarks

@everyfooting @everyfootingmarks @everyheading

@everyheadingmarks @exampleindent @firstparagraphindent

@fonttextsize @footnotestyle @frenchspacing

Chapter 19: texi2any: The Translator for Texinfo 173

@headings @kbdinputstyle @microtype

@novalidate @oddfooting @oddfootingmarks

@oddheading @oddheadingmarks @pagesizes

@paragraphindent @setfilename @setchapternewpage

@shortcontents @smallbook @summarycontents

@urefbreakstyle @xrefautomaticsectiontitle

Setting such a customization variable to a value ‘foo’ is similar to executing @cmd foo.
It is not exactly the same, though, since any side effects of parsing the Texinfo source are not
redone. Also, some variables do not take Texinfo code when generating particular formats,
but an argument that is already formatted. This is the case, for example, for HTML for
documentdescription.

Note that if texi2any is invoked to process the file with TEX (e.g., with the --pdf

option), then these customization variables may not be passed on to TEX.

19.4.2 Customization Variables and Options

The following table gives the customization variables associated with some command line
options. See Section 19.1 [Invoking texi2any], page 164, for the meaning of the options.

Option Variable
--enable-encoding ENABLE_ENCODING

--document-language documentlanguage

--error-limit ERROR_LIMIT

--fill-column FILLCOLUMN

--footnote-style footnotestyle

--force FORCE

--internal-links INTERNAL_LINKS

--macro-expand MACRO_EXPAND

--headers HEADERS, FORMAT_MENU
--no-warn NO_WARN

--no-validate novalidate

--number-footnotes NUMBER_FOOTNOTES

--number-sections NUMBER_SECTIONS

--node-files NODE_FILES

--output OUTFILE, SUBDIR
--paragraph-indent paragraphindent

--silent SILENT

--split SPLIT

--split-size SPLIT_SIZE

--transliterate-file-names TRANSLITERATE_FILE_NAMES

--verbose VERBOSE

Setting such a customization variable to a value ‘foo’ is essentially the same as specifying
the --opt=foo if the option takes an argument, or --opt if not.

In addition, the customization variable TEXINFO_OUTPUT_FORMAT allows specifying what
texi2any outputs, either one of the usual output formats that can be specified with options,
or various other forms:

Chapter 19: texi2any: The Translator for Texinfo 174

‘docbook’
‘dvi’
‘dvipdf’
‘epub3’
‘html’
‘info’
‘pdf’
‘plaintext’
‘ps’
‘xml’ These correspond to the command-line options (and TEXINFO_OUTPUT_FORMAT

environment variable values) of the same name. See Section 19.1 [Invoking
texi2any], page 164.

‘debugtree’
Instead of generating a regular output format, output a text representation of
the tree obtained by parsing the input texinfo document.

‘parse’ Do only Texinfo source parsing; there is no output.

‘plaintexinfo’
Output the Texinfo source with all the macros, @include and @value{} ex-
panded. This is similar to setting --macro-expand, but instead of being output
in addition to the normal conversion, output of Texinfo is the main output.

‘rawtext’ Output raw text, with minimal formatting. For example, footnotes are ignored
and there is no paragraph filling. This is used by the parser for file names and
copyright text in HTML comments, for example.

‘structure’
Do only Texinfo source parsing and determination of the document structure;
there is no output.

‘texinfosxml’
Output the document in TexinfoSXML representation, a syntax for writing
XML data using Lisp S-expressions.

‘textcontent’
Output the text content only, stripped of commands; this is useful for spell
checking or word counting, for example. The trivial detexinfo script setting
this is in the util directory of the Texinfo source as an example. It’s one line:

exec texi2any -c TEXINPUT_OUTPUT_FORMAT=textcontent "$@"

19.4.3 HTML Customization Variables

This table gives the customization variables which apply to HTML output only. A few other
customization variables apply to both HTML and other output formats; see Section 19.4.8
[Other Customization Variables], page 183.

AVOID_MENU_REDUNDANCY

If set, and the menu entry and menu description are the same, then do not print
the menu description; default false.

Chapter 19: texi2any: The Translator for Texinfo 175

AFTER_BODY_OPEN

If set, the corresponding text will appear at the beginning of each HTML file;
default unset.

AFTER_SHORT_TOC_LINES

AFTER_TOC_LINES

If set, the corresponding text is output after the short table of contents for
AFTER_SHORT_TOC_LINES and after the table of contents for AFTER_TOC_LINES;
otherwise, a default string is used. At the time of writing, a </div> element is
closed.

In general, you should set BEFORE_SHORT_TOC_LINES if AFTER_SHORT_TOC_

LINES is set, and you should set BEFORE_TOC_LINES if AFTER_TOC_LINES is
set.

BASEFILENAME_LENGTH

The maximum length of a base file name; default 245. Changing this would
make cross-manual references to such long node names invalid (see Section 21.7.1
[HTML Xref Link Basics], page 210).

BEFORE_SHORT_TOC_LINES

BEFORE_TOC_LINES

If set, the corresponding text is output before the short table of contents for
BEFORE_SHORT_TOC_LINES and before the table of contents for BEFORE_TOC_

LINES, otherwise a default string is used. At the time of writing, a <div ...>

element is opened.

In general you should set AFTER_SHORT_TOC_LINES if BEFORE_SHORT_TOC_LINES
is set, and you should set AFTER_TOC_LINES if BEFORE_TOC_LINES is set.

BIG_RULE Rule used after and before the top element and before special elements, but not
for footers and headers; default <hr>.

BODYTEXT The text appearing in <body>. By default, sets the HTML lang attribute to
the document language (see Section 14.1 [@documentlanguage], page 131).

CASE_INSENSITIVE_FILENAMES

Construct output file names as if the filesystem were case insensitive (see
Section 21.2 [HTML Splitting], page 206); default false.

CHAPTER_HEADER_LEVEL

Header formatting level used for chapter level sectioning commands; default ‘2’.

CHECK_HTMLXREF

Check that manuals which are the target of external cross-references (see Sec-
tion 5.6 [Four and Five Arguments], page 47) are present in htmlxref.cnf (see
Section 21.7.6 [HTML Xref Configuration], page 214); default false.

COMPLEX_FORMAT_IN_TABLE

If set, use tables for indentation of complex formats; default false.

CONTENTS_OUTPUT_LOCATION

If set to ‘after_top’, output the contents at the end of the @top section. If set
to ‘inline’, output the contents where the @contents and similar @-commands

Chapter 19: texi2any: The Translator for Texinfo 176

are located. If set to ‘separate_element’ output the contents in separate
elements, either at the end of the document if not split, or in a separate file. If
set to ‘after_title’ the tables of contents are output after the title; default
‘after_top’.

CONVERT_TO_LATEX_IN_MATH

If set, try to convert any Texinfo @-commands inside @math and @displaymath

to LATEX, before converting the @math or @displaymath to HTML. Default
undef. If undefined, set if HTML_MATH is set.

COPIABLE_LINKS

If set, output copiable links for the definition commands (see Chapter 13
[Definition Commands], page 118) and table commands (see Section 8.4 [Two-
column Tables], page 79) where an index entry is defined. A link appears as a
‘¶’ sign that appears when you hover the mouse pointer over the heading text.

DATE_IN_HEADER

Put the document generation date in the header; off by default.

DEF_TABLE

If set, a <table> construction for @deffn and similar @-commands is used
(looking more like the TEX output), instead of definition lists; default false.

DEFAULT_RULE

Rule used between element, except before and after the top element, and before
special elements, and for footers and headers; default <hr>.

DO_ABOUT If set to 0 never do an About special element; if set to 1 always do an About
special element; default 0.

EXTERNAL_CROSSREF_SPLIT

For cross-references to other manuals, this determines if the other manual is
considered to be split or monolithic. By default, it is set based on the value of
SPLIT. See Section 21.7 [HTML Xref], page 209, and see Section 21.7.6 [HTML
Xref Configuration], page 214.

EXTERNAL_DIR

Base directory for external manuals; default none. It is better to use the
general external cross-reference mechanism (see Section 21.7.6 [HTML Xref
Configuration], page 214) than this variable.

EXTERNAL_CROSSREF_EXTENSION

File extension for cross-references to other manuals. If unset, based on
EXTENSION.

EXTRA_HEAD

Additional text appearing within <head>; default unset.

FOOTNOTE_END_HEADER_LEVEL

Header formatting level used for the footnotes header with the ‘end’ footnotestyle;
default ‘4’. See Section 9.3.2 [Footnote Styles], page 89.

FOOTNOTE_SEPARATE_HEADER_LEVEL

Header formatting level used for the footnotes header with the ‘separate’ foot-
notestyle; default ‘4’. See Section 9.3.2 [Footnote Styles], page 89.

Chapter 19: texi2any: The Translator for Texinfo 177

FRAMES If set, a file describing the frame layout is generated, together with a file with
the short table of contents; default false.

FRAMESET_DOCTYPE

Same as DOCTYPE, but for the file containing the frame description.

HEADER_IN_TABLE

Use tables for header formatting rather than a simple <div> element; default
false.

HTML_MATH

Method to use to render @math. This can be unset, set to ‘mathjax’ (see
Section 19.4.4 [MathJax Customization Variables], page 181), set to ‘l2h’, which
uses latex2html (see Section 19.4.5 [latex2html Customization Variables],
page 181), or set to ‘t4h’, which uses tex4ht (see Section 19.4.6 [tex4ht
Customization Variables], page 182). In the default case, setting HTML_MATH

also sets CONVERT_TO_LATEX_IN_MATH.

HTML_ROOT_ELEMENT_ATTRIBUTES

Use that string for the <html> HTML document root element. Default undefined.

HTMLXREF_FILE

Set the file name used for cross-references to other manuals. If not defined,
htmlxref.cnf is used (see Section 21.7.6 [HTML Xref Configuration], page 214).
Not defined in the default case. If TEST is set, HTMLXREF_MODE is set to the
default and HTMLXREF_FILE is not defined, information on cross-references to
other manuals is not used.

If HTMLXREF_MODE is set to ‘file’ the file name is directly used as the source of
information, otherwise the file name is searched for in directories, and all the
files found are used (see Section 21.7.6 [HTML Xref Configuration], page 214).

HTMLXREF_MODE

How cross-references to other manuals information is determined. If set to ‘none’,
no information is used. If set to ‘file’, the information is determined from a
file path, htmlxref.cnf in the default case, or the value of HTMLXREF_FILE. If
not defined (the default) or set to any other value, search in directories and use
all the files (see Section 21.7.6 [HTML Xref Configuration], page 214).

ICONS Use icons for the navigation panel; default false.

IMAGE_LINK_PREFIX

If set, the associated value is prepended to the image file links; default unset.

INDEX_ENTRY_COLON

Symbol used between the index entry and the associated node or section; default
‘:’.

INFO_JS_DIR

(Experimental.) Add a JavaScript browsing interface to the manual. The value
of the variable is the directory to place the code for this interface, so you would
run the program as e.g. ‘texi2any --html -c INFO_JS_DIR=js manual.texi’
to place files in a ‘js’ directory under the output. This provides some of the

Chapter 19: texi2any: The Translator for Texinfo 178

functionality of the Info browsers in a web browser, such as keyboard navigation
and index lookup. This only works with non-split HTML output.

The interface should provide an acceptable fallback in functionality if JavaScript
or web browser features are not available. However, please be cautious when
using this option, in case you do make your documentation harder to access for
some of your users.

IGNORE_REF_TO_TOP_NODE_UP

Ignore references to TOP_NODE_UP, the up node for the Top node.

INLINE_CSS_STYLE

Put CSS directly in HTML elements rather than at the beginning of the output;
default false.

JS_WEBLABELS

JS_WEBLABELS_FILE

Specify how to use a JavaScript license web labels page to give licensing informa-
tion and source code for any JavaScript used in the HTML files for the manual.
(See https://www.gnu.org/licenses/javascript-labels.html).

With the value ‘generate’ (the default), generate a labels page at
JS_WEBLABELS_FILE, and link to it in the HTML output files. Only do this if
actually referencing JavaScript files (either with HTML_MATH set to ‘mathjax’, or
when using the experimental JS browsing interface when INFO_JS_DIR is set).
With this setting, JS_WEBLABELS_FILE must be a relative file name.

With the value ‘reference’, link to the labels file given by JS_WEBLABELS_FILE

in the output, and do not generate a labels file. This setting is useful if you
separately maintain a single labels file for a larger website that includes your
manual.

With ‘omit’, neither generate nor link to a labels file.

MAX_HEADER_LEVEL

Maximum header formatting level used (higher header formatting level numbers
correspond to lower sectioning levels); default ‘4’.

MENU_ENTRY_COLON

Symbol used between the menu entry and the description; default ‘:’.

MENU_SYMBOL

Symbol used in front of menu entries when node names are used for menu entries
formatting; default is undefined and set to • if USE_NUMERIC_ENTITY is
not set, and to ’ if set.

MONOLITHIC

Output only one file including the table of contents. Set by default, but only
relevant when the output is not split.

NO_CSS Do not use CSS; default false. See Section 21.3 [HTML CSS], page 206.

NO_CUSTOM_HTML_ATTRIBUTE

Do not output HTML with custom attributes in elements; default false.

https://www.gnu.org/licenses/javascript-labels.html

Chapter 19: texi2any: The Translator for Texinfo 179

NO_NUMBER_FOOTNOTE_SYMBOL

Symbol used for footnotes if NUMBER_FOOTNOTES is false. Default is *.

NODE_NAME_IN_INDEX

If true, use node names in index entries, otherwise prefer section names. If
undefined, use USE_NODES value in HTML. Default is undefined.

PRE_BODY_CLOSE

If set, the given text will appear at the footer of each HTML file; default unset.

PROGRAM_NAME_IN_ABOUT

Used when an About element is output. If set, output the program name and
miscellaneous related information in About special element; default false.

PROGRAM_NAME_IN_FOOTER

If set, output the program name and miscellaneous related information in the
page footers; default false.

SECTION_NAME_IN_TITLE

If set, when output is split, use the argument of the chapter structuring command
(e.g., @chapter or @section) in the <title> instead of the argument to @node.

SHORT_TOC_LINK_TO_TOC

If set, the cross-references in the Short table of contents links to the corresponding
Table of Contents entries, if a Table of Contents is output; default true.

SHOW_BUILTIN_CSS_RULES

Output the built-in default CSS rules on the standard output and exit.

SHOW_TITLE

If set, output the title at the beginning of the document; default ‘undef’. If set
to ‘undef’, setting NO_TOP_NODE_OUTPUT also sets SHOW_TITLE for HTML.

SIMPLE_MENU

If set, use a simple preformatted style for the menu, instead of breaking down
the different parts of the menu; default false. See Section 3.9.4 [Menu Parts],
page 36.

TOC_LINKS

If set, links from headings to toc entries are created; default false.

TOP_FILE This file name may be used for the top-level file. The extension is set appropri-
ately, if necessary. This is used to override the default, and is, in general, only
taken into account when output is split, and for HTML.

TOP_NODE_FILE_TARGET

File name used for the Top node in cross-references; default is index.html.

TOP_NODE_UP_URL

A URL used for Top node up references; the default is undef, in that case no
Top node Up reference is generated. For more about the Top node pointers,
see Section 3.4 [First Node], page 30. For overriding the Up pointer name
in case TOP_NODE_UP_URL is set and for other formats, see TOP_NODE_UP in
Section 19.4.8 [Other Customization Variables], page 183.

Chapter 19: texi2any: The Translator for Texinfo 180

USE_ACCESSKEY

Use accesskey in cross-references; default true.

USE_ISO Use entities for doubled single-quote characters (see Section 11.5 [Inserting
Quotation Marks], page 104), and ‘---’ and ‘--’ (see Section 2.1 [Conventions],
page 9); default true.

USE_LINKS

Generate <link> elements in the HTML <head> output; default true.

USE_NEXT_HEADING_FOR_LONE_NODE

If set, a node not associated to a sectioning command but followed by a heading
command not usually associated to node such as @heading before other formatted
contents do not have its name output as a heading, under the assumption that
the command found provides the heading. Default true.

USE_NODE_DIRECTIONS

If true, use nodes to determine where next, up and prev link to in node headers.
If false, use sections. If undefined, use USE_NODES value. Default is undefined.
Note that this setting does not determine the link string only where the links
points to, see Section 5.5 [xrefautomaticsectiontitle], page 46, for the link
string customization. If nodes and sections are systematically associated, this
customization has no practical effect.

USE_REL_REV

Use rel in cross-references; default true.

USE_TITLEPAGE_FOR_TITLE

Use the full @titlepage as the title, not a simple title string; default true. Only
relevant if SHOW_TITLE is set.

USE_XML_SYNTAX

Use XML/XHTML compatible syntax.

VERTICAL_HEAD_NAVIGATION

If set, a vertical navigation panel is used; default false.

WORDS_IN_PAGE

When output is split by nodes, specifies the approximate minimum page length
at which a navigation panel is placed at the bottom of a page. To avoid ever
having the navigation buttons at the bottom of a page, set this to a sufficiently
large number. The default is 300.

XREF_USE_FLOAT_LABEL

If set, for the float name in cross-references, use the float label instead of the
type followed by the float number (see Section 9.1.1 [@float], page 84). The
default is off.

XREF_USE_NODE_NAME_ARG

Only relevant for cross-reference commands with no cross reference name (second
argument). If set to 1, use the node name (first) argument in cross-reference
@-commands for the text displayed as the hyperlink. If set to 0, use the node
name if USE_NODES is set, otherwise the section name. If set to ‘undef’, use the

Chapter 19: texi2any: The Translator for Texinfo 181

first argument in preformatted environments, otherwise use the node name or
section name depending on USE_NODES. The default is ‘undef’.

19.4.4 MathJax Customization Variables

This table lists the customization variables which can be used when MathJax is being used,
which will be the case when HTML_MATH is set to ‘mathjax’.

MATHJAX_SCRIPT

URL of the MathJax component file (e.g. tex-svg.js) you are using. texi2any
provides a default value for this variable, but you are encouraged to host this
file yourself on your website so that you are not dependent on others’ hosting.

MATHJAX_SOURCE

A URL of the full source code in its preferred form for modification, or in-
structions for obtaining such source code, for the component file named by
MATHJAX_SCRIPT. ‘Preferred form for modification’ means that this should not
be in a ‘minified’ form. Used in the license labels page (see Section 19.4.3 [HTML
Customization Variables], page 174, under JS_WEBLABELS).

Again, texi2any provides a default value for this variable, but you are encour-
aged to host the source code for MathJax and its dependencies yourself. This is
in order to make the source code available reliably, and to reduce you and your
users’ dependence on others’ distribution systems.

19.4.5 latex2html Customization Variables

This table lists the customization variables which can be used when latex2html is being used
to convert @math, @displaymath, @latex and @tex sections for HTML. These customization
variables are relevant only if HTML_MATH is set to ‘l2h’.

To actually convert @tex sections, --iftex should be used, and to actually convert
@latex sections, --iflatex should be used.

L2H_CLEAN

If set, the intermediate files generated in relation with latex2html are removed;
default true.

L2H_FILE If set, the given file is used as latex2html’s init file; default unset.

L2H_HTML_VERSION

The HTML version used in the latex2html call; default unset.

L2H_L2H The program invoked as latex2html; default is latex2html.

L2H_SKIP If set to a true value, the actual call to latex2html is skipped; previously
generated content is reused instead. If set to 0, the cache is not used at all. If
set to ‘undef’, the cache is used for as many TEX fragments as possible and for
any remaining the command is run. The default is ‘undef’.

L2H_TMP Set the directory used for temporary files. None of the file name components in
this directory name may start with ‘.’; otherwise, latex2html will fail (because
of dvips). The default is the empty string, which means the current directory.

Chapter 19: texi2any: The Translator for Texinfo 182

19.4.6 tex4ht Customization Variables

This table lists the customization variables which can be used when tex4ht is being used to
convert @math, @displaymath, @tex and @latex sections for HTML. These customization
variables are relevant only if HTML_MATH is set to ‘t4h’.

To actually convert @tex sections, --iftex should be used, and to actually convert
@latex sections, --iflatex should be used.

T4H_LATEX_CONVERSION

If set, the conversion type used for @latex sections. Possibilities are ‘latex’,
‘tex’ and ‘texi’. Set to ‘latex’ if not defined.

T4H_MATH_CONVERSION

If set, the conversion type used for @math and @displymath. Possibilities are
‘latex’, ‘tex’ and ‘texi’. Set to ‘tex’ if not defined.

T4H_TEX_CONVERSION

If set, the conversion type used for @tex sections. Possibilities are ‘latex’, ‘tex’
and ‘texi’. Set to ‘tex’ if not defined.

19.4.7 LATEX Customization Variables� �
warning: LATEX output customization is experimental. Nothing is decided,
everything can change, and we would welcome any feedback.
 	

This table gives the customization variables which apply to LATEX output only.

CLASS_BEGIN_USEPACKAGE

If set, the corresponding text will replace the LATEX \documentclass, package
imports that are always output and are output right after \documentclass, and
package imports that depend on the document encoding setting the input and
font encoding (inputenc and fontenc).

The text replaced is along:

\documentclass{book}

\usepackage{amsfonts}

\usepackage{amsmath}

\usepackage[gen]{eurosym}

\usepackage{textcomp}

\usepackage{graphicx}

\usepackage{etoolbox}

\usepackage{titleps}

\usepackage[utf8]{inputenc}

\usepackage[T1]{fontenc}

END_USEPACKAGE

If set, the corresponding text will replace the package imports that depend on
the Texinfo commands used, and the last packages imports that are always
output and output after all the other packages imports. The last package imports
corresponds to ‘\usepackage[hidelinks]{hyperref}’.

Chapter 19: texi2any: The Translator for Texinfo 183

Here is an example of the corresponding text for a document with indices, @need,
@multitable, definition commands, @cartouche, lists, and @float:

\usepackage{imakeidx}

\usepackage{needspace}

\usepackage{array}

\usepackage{embrac}

\usepackage{expl3}

\usepackage{tabularx}

\usepackage[framemethod=tikz]{mdframed}

\usepackage{enumitem}

\usepackage{float}

\usepackage[hidelinks]{hyperref}

19.4.8 Other Customization Variables

This table gives the remaining customization variables, which apply to multiple formats, or
affect global behavior, or otherwise don’t fit into the categories of the previous sections.

ASCII_DASHES_AND_QUOTES

For Info output, when set, use plain ASCII characters to represent quotation
marks, hyphens and dashes when these are given in the Texinfo source as ‘-’,
‘--’, ‘---’, ‘`’, ‘``’, ‘'’, and ‘''’, rather than UTF-8 directional quotation marks,
en dashes, vel sim. On by default.

ASCII_GLYPH

For Info output, use ASCII output for glyph commands such as the copyright sign
(@copyright{}, becoming ‘(C)’), and the bullet symbol (@bullet{}, becoming
‘*’), rather than other Unicode sequences. Off by default.

ASCII_PUNCTUATION

Avoid any unncessary or gratuitious non-ASCII, UTF-8 sequences in the output.
Implies both ASCII_DASHES_AND_QUOTES and ASCII_GLYPH and additionally
affects the output of commands such as @samp which output quotation marks.

AUTO_MENU_DESCRIPTION_ALIGN_COLUMN

For Info output, column at which to start a menu entry description provided
by @nodedescription or @nodedescriptionblock. Undefined by default, in
which case 45% of the fill column value is used (see Section 19.1 [Invoking
texi2any], page 164).

AUTO_MENU_MAX_WIDTH

Maximum number of columns in a menu entry line in Info when adding a
description from @nodedescription or @nodedescriptionblock. Undefined
by default, in which case 10% more than the fill column value is used (see
Section 19.1 [Invoking texi2any], page 164).

CHECK_MISSING_MENU_ENTRY

When a @menu block occurs in a node, check if there is a menu entry for all
subordinate nodes in the document sectioning structure. On by default.

Chapter 19: texi2any: The Translator for Texinfo 184

CHECK_NORMAL_MENU_STRUCTURE

Warn if the node pointers (either explicitly or automatically set) are not consis-
tent with the order of node menu entries. This is a more thorough structure
check than that provided by CHECK_MISSING_MENU_ENTRY. Off by default.

CLOSE_QUOTE_SYMBOL

When a closing quote is needed, e.g. for @samp output, use this character;
default ’ in DocBook. Undefined in the default case in HTML and set
to ’ if USE_NUMERIC_ENTITY is not set, to ’ if set, and to a quote
character if OUTPUT_CHARACTERS is set and the output encoding includes that
character.

The default for Info is set the same as for OPEN_QUOTE_SYMBOL, except that the
Unicode code is a closing quote (see below).

CLOSE_DOUBLE_QUOTE_SYMBOL

When a closing double quote is needed, for ‘@dfn’ in Info, use this character.
The default for Info is set the same as for OPEN_DOUBLE_QUOTE_SYMBOL, except
that the Unicode code is a closing double quote (see below).

COMMAND_LINE_ENCODING

Encoding used to decode command-line arguments. Default is based on the
locale encoding. This may affect file names inserted into output files or error
messages printed by the program.

Note that some file and directory names from the command line may not be
decoded immediately, and may not be decoded at all.

CPP_LINE_DIRECTIVES

Recognize #line directives in a “preprocessing” pass (see Section 16.7 [External
Macro Processors], page 153); on by default.

DEBUG If set, debugging output is generated; default is off (zero).

DOC_ENCODING_FOR_INPUT_FILE_NAME

If set, use the input Texinfo document encoding information for the encoding of
input file names, such as file names specified as @include or @verbatiminclude
arguments. If unset, use the locale encoding instead. Default is set, except on
MS-Windows where the locale encoding is used by default.

Note that this is for file names only; the default encoding or
@documentencoding is always used for the encoding of file content (see
Section 14.2 [@documentencoding], page 132).

The INPUT_FILE_NAME_ENCODING variable overrides this variable.

DOC_ENCODING_FOR_OUTPUT_FILE_NAME

If set, use the input Texinfo document encoding information for the encoding of
output file names, such as files specified with --output. If unset, use the locale
encoding instead. Default is unset, so files names are encoded using the current
locale.

Note that this is for file names only; OUTPUT_ENCODING_NAME is used for the
encoding of file content.

The OUTPUT_FILE_NAME_ENCODING variable overrides this variable.

Chapter 19: texi2any: The Translator for Texinfo 185

DOCTYPE For DocBook, HTML, XML. Specifies the SystemLiteral, the entity’s system
identifier. This is a URI which may be used to retrieve the entity, and identifies
the canonical DTD for the document. The default value is different for each of
HTML, DocBook and XML.

DUMP_TEXI

For debugging. If set, no conversion is done, only parsing and macro expansion.
If the option --macro-expand is set, the Texinfo source is also expanded to the
corresponding file. Default false.

DUMP_TREE

For debugging. If set, the tree constructed upon parsing a Texinfo document is
output to standard error; default false.

EPUB_CREATE_CONTAINER_FILE

If set to 0, do not generate the EPUB output file. Default is set to 1.

EPUB_KEEP_CONTAINER_FOLDER

If set, keep the directory containing the directories and files needed for EPUB.
The EPUB output file is a ZIP archive of this directory. Default is not defined.
Set if not defined and TEST or DEBUG is set. See Section 21.5.1 [EPUB Output
File and Directory], page 208.

EXTENSION

The extension added to the output file name. The default is different for each
output format.

FORMAT_MENU

If set to ‘menu’, output Texinfo menus. This is the default for Info. ‘sectiontoc’
is the default setting for HTML, where instead of the contents of @menu blocks
being output, a list of subordinate sections is output in each node. If set to
‘nomenu’, do not output menus.

This variable is set to ‘nomenu’ when generating DocBook, or when --no-

headers is specified.

HIGHLIGHT_SYNTAX

If set, @example blocks with language information as first argument are high-
lighted in the HTML output. It is also possible to specify a default for the
language with HIGHLIGHT_SYNTAX_DEFAULT_LANGUAGE. Syntax highlighting re-
quires an external program to generate the highlighted HTML. The HIGHLIGHT_
SYNTAX value allows to select a specific program. The possibilities are highlight,
pygments, any other value standing for source-highlight (see Section 21.6
[Syntax Highlighting], page 209).

HIGHLIGHT_SYNTAX_DEFAULT_LANGUAGE

The default language used for syntax highlighting when there is no language
information.

IGNORE_SPACE_AFTER_BRACED_COMMAND_NAME

If set, spaces are ignored after an @-command that takes braces. Default true,
matching the TEX behavior.

Chapter 19: texi2any: The Translator for Texinfo 186

INDEX_SPECIAL_CHARS_WARNING

If set, warn about ‘:’ in index entry, as not all Info readers may be able to process
these. For Info and plaintext only. Default false, because parsing problems there
don’t prevent navigation; readers can still relatively easily find their way to the
node in question.

INFO_SPECIAL_CHARS_QUOTE

If set, whenever there are problematic characters for Info output in places such as
node names or menu items, surround the part of the construct where they appear
with quoting characters, as described in Appendix F [Info Format Specification],
page 283. Default is set for Info and unset for plaintext. See Section 3.3 [Node
Line Requirements], page 29.

INFO_SPECIAL_CHARS_WARNING

If set, warn about problematic constructs for Info output (such as the string
‘::’) in node names, menu items, and cross-references. If not defined, set unless
INFO_SPECIAL_CHARS_QUOTE is set. Default is set for Info and not defined for
plaintext. Similar warnings in index entries are covered by INDEX_SPECIAL_

CHARS_WARNING.

INPUT_FILE_NAME_ENCODING

Encoding used for input file names. This variable overrides any encoding from
the document or current locale. Normally, you do not need to set this variable,
but it can be used if file names are in a certain character encoding on a filesystem.
An alternative is to set DOC_ENCODING_FOR_INPUT_FILE_NAME to ‘0’ to use the
locale encoding. See also OUTPUT_FILE_NAME_ENCODING.

LOCALE_ENCODING

Locale encoding obtained from the system. You should not need to explicitly
set this variable.

MAX_MACRO_CALL_NESTING

The maximal number of recursive calls of @-commands defined through @rmacro;
default 100000. The purpose of this variable is to avoid infinite recursions.

MESSAGE_ENCODING

Encoding used to encode messages output by texi2any. Default is based on
the locale encoding.

It is also used for command-line argument passed to commands called from
texi2any. For example, latex2html will be called from texi2any if HTML_MATH
is set to ‘l2h’.

NO_TOP_NODE_OUTPUT

If set do not output the Top node content. The Top node is still parsed, but
the content is discarded. Not set in the default case for HTML. Set in the
default case for EPUB. If SHOW_TITLE is ‘undef’, setting NO_TOP_NODE_OUTPUT

also sets SHOW_TITLE for HTML.

Setting NO_TOP_NODE_OUTPUT, which removes the Top node and adds a title page
corresponds more to the formatting of a book. Setting NO_TOP_NODE_OUTPUT

to false, with SHOW_TITLE remaining ‘undef’, and false, corresponds more to a

Chapter 19: texi2any: The Translator for Texinfo 187

document setup for browsing, with a direct access to the information at the Top
node.

For DocBook, NO_TOP_NODE_OUTPUT is set to true. Setting NO_TOP_NODE_OUTPUT
to false causes the Top node content to be output. It is not recommended to
output the Top node in DocBook as the title and copying informations are
always output. This option is kept for DocBook for compatibility, as before
2022 the Top node was output in DocBook. It could be removed in the future.

NO_USE_SETFILENAME

If set, do not use @setfilename to set the document name; instead, base the
output document name only on the input file name. The default is false.

NODE_NAME_IN_MENU

If set, use node names in menu entries, otherwise prefer section names; default
true.

OPEN_QUOTE_SYMBOL

When an opening quote is needed, e.g., for ‘@samp’ output, use the specified
character; default ‘ for DocBook. Undefined in the default case in HTML
and set to ‘ if USE_NUMERIC_ENTITY is not set, to ’ if set, and to
a quote character if OUTPUT_CHARACTERS is set and the output encoding includes
that character.

For Info, the default depends on the enabled document encoding. If --disable-
encoding is set or the document encoding is not UTF-8, ‘'’ is used. This
character usually appears as an undirected single quote on modern systems.
Otherwise, the Info output uses a Unicode left quote.

OPEN_DOUBLE_QUOTE_SYMBOL

When an opening double quote is needed, for ‘@dfn’ output in Info, use the
specified character. If --disable-encoding is set or the document encoding is
not UTF-8, ‘"’ is used. Otherwise, the Info output uses a Unicode left double
quote.

OUTPUT_CHARACTERS

If not set, the default, output accented and special characters in HTML, XML and
DocBook using XML entities, and in LATEX using macros. If set, output accented
characters in HTML, XML, DocBook and LATEX output and special characters
in HTML and LATEX output based on the document encoding. See Section 14.2
[@documentencoding], page 132, and Section 11.4 [Inserting Accents], page 103.

OUTPUT_ENCODING_NAME

Normalized encoding name used for output files. Should be a usable charset name
in HTML, typically one of the preferred IANA encoding names. By default, if an
input encoding is set (typically through @documentencoding), this information
is used to set the output encoding name, otherwise the output encoding is based
on the default encoding. See Section 14.2 [@documentencoding], page 132.

OUTPUT_FILE_NAME_ENCODING

Encoding used for output file names. This variable overrides any encoding from
the document or current locale.

Chapter 19: texi2any: The Translator for Texinfo 188

Normally, you do not need to set this variable, but it can be used if file names
should be created in a certain character encoding on a filesystem. See also
INPUT_FILE_NAME_ENCODING.

PACKAGE

PACKAGE_VERSION

PACKAGE_AND_VERSION

PACKAGE_URL

PACKAGE_NAME

The implementation’s short package name, package version, package name and
version concatenated, package URL, and full package name, respectively. By
default, these variables are all set through Autoconf, Automake, and configure.

PREFIX The output file prefix, which is prepended to some output file names. By
default it is set by @setfilename or from the input file (see [Setting the Output
File Name], page 13). How this value is used depends on the value of other
customization variables or command line options, such as whether the output is
split. The default is unset.

PROGRAM Name of the program used. By default, it is set to the name of the program
launched, with a trailing ‘.pl’ removed.

SORT_ELEMENT_COUNT

If set, the name of a file to which a list of elements (nodes or sections, depending
on the output format) is dumped, sorted by the number of lines they contain
after removal of @-commands; default unset. This is used by the program texi-

elements-by-size in the util/ directory of the Texinfo source distribution
(see [texi-elements-by-size], page 245).

SORT_ELEMENT_COUNT_WORDS

When dumping the elements-by-size file (see preceding item), use word counts
instead of line counts; default false.

TEST If set to true, some variables which are normally dynamically generated anew
for each run (date, program name, version) are set to fixed and given values.
This is useful to compare the output to a reference file, as is done for the tests.
The default is false.

TEXI2DVI Name of the command used to produce PostScript, PDF, and DVI; default
‘texi2dvi’. See Section 19.3 [texi2any Printed Output], page 171.

TEXI2HTML

Generate HTML and try to be as compatible as possible with texi2html; default
false.

TEXINFO_DTD_VERSION

For XML. Version of the DTD used in the XML output preamble. The default
is set based on a variable in configure.ac.

TEXTCONTENT_COMMENT

For stripped text content output (i.e., when TEXINFO_OUTPUT_FORMAT is set to
textcontent). If set, also output comments. Default false.

Chapter 19: texi2any: The Translator for Texinfo 189

TOP_NODE_UP

Up node for the Top node; default ‘(dir)’. This node name is supposed to be
already formatted for the output format. In HTML can be used in attribute, so
should not contain any element. Used for HTML output only if TOP_NODE_UP_
URL is set to override the URL, see TOP_NODE_UP_URL in Section 19.4.3 [HTML
Customization Variables], page 174.

TREE_TRANSFORMATIONS

The associated value is a comma separated list of transformations that can be
applied to the Texinfo tree prior to outputting the result. If more than one is
specified, the ordering is irrelevant; each is always applied at the necessary point
during processing.

By default, the tree transformations ‘move_index_entries_after_items’ and
‘relate_index_entries_to_table_entries’ are executed for HTML and Doc-
Book output. Here’s an example of updating the master menu in a document:

texi2any \

-c TREE_TRANSFORMATIONS=regenerate_master_menu \

-c TEXINFO_OUTPUT_FORMAT=plaintexinfo \

mydoc.texi \

-o /tmp/out

(Caveat: Since ‘plaintexinfo’ output expands Texinfo macros and conditionals,
it’s necessary to remove any such differences before installing the updates in the
original document. This may be remedied in a future release.)

The following transformations are currently supported (many are used in the
pod2texi utility distributed with Texinfo; see Section 19.6 [Invoking pod2texi],
page 192):

‘complete_tree_nodes_menus’
Add menu entries or whole menus for nodes associated with sections
of any level, based on the sectioning tree.

‘complete_tree_nodes_missing_menu’
Add whole menus for nodes associated with sections without menu.
The menus are based on the sectioning tree.

‘fill_gaps_in_sectioning’
Adds empty @unnumbered... sections in a tree to fill gaps in sec-
tioning. For example, an @unnumberedsec will be inserted if a
@chapter is followed by a @subsection.

‘insert_nodes_for_sectioning_commands’
Insert nodes for sectioning commands lacking a corresponding node.

‘move_index_entries_after_items’
In @enumerate and @itemize, move index entries appearing just
before an @item to just after the @item. Comment lines between
index entries are moved too. As mentioned, this is always done for
HTML and DocBook output.

Chapter 19: texi2any: The Translator for Texinfo 190

‘regenerate_master_menu’
Update the Top node master menu, either replacing the (first)
@detailmenu in the Top node menu, or creating it at the end of the
Top node menu.

‘relate_index_entries_to_table_entries’
In @table, @vtable and @ftable, reassociate the index entry infor-
mation from an index @-command appearing right after an @item

line with the first element of the @item. Remove the index @-
command from the tree.

‘simple_menu’
Mostly the same as SIMPLE_MENU: use a simple preformatted style
for the menu. It differs from setting SIMPLE_MENU in that SIMPLE_
MENU only has an effect in HTML output.

USE_NODES

Preferentially use nodes to decide where elements are separated. If set to false,
preferentially use sectioning to decide where elements are separated. The default
is true.

USE_NUMERIC_ENTITY

For HTML, XML and DocBook. If set, use numeric entities instead of named
entities. By default, set to true for DocBook output.

USE_UP_NODE_FOR_ELEMENT_UP

Fill in up sectioning direction with node direction when there is no sectioning
up direction. In practice this can only happen when there is no @top section.
Not set by default.

USE_SETFILENAME_EXTENSION

Default is on for Info, off for other output. If set, use exactly what @setfilename
gives for the output file name, including the extension. You should not need to
explicitly set this variable.

USE_UNIDECODE

If set to false, do not use the Text::Unidecode Perl module to transliterate
more characters; default true.

19.5 Internationalization of Document Strings

texi2any writes fixed strings into the output document at various places: cross-references,
page footers, the help page, alternate text for images, and so on. The string chosen depends
on the value of the documentlanguage at the time of the string being output (see Section 14.1
[@documentlanguage], page 131, for the Texinfo command interface).

The Gettext framework is used for those strings (see Gettext). The libintl-perl package
is used as the gettext implementation; more specifically, the pure Perl implementation is
used, so Texinfo can support consistent behavior across all platforms and installations, which
would not otherwise be possible. libintl-perl is included in the Texinfo distribution and
always installed, to ensure that it is available if needed. It is also possible to use the system
gettext (the choice can be made at build-time).

Chapter 19: texi2any: The Translator for Texinfo 191

The Gettext domain ‘texinfo_document’ is used for the strings. Translated strings
are written as Texinfo, and may include @-commands. In translated strings, the varying
parts of the string are not usually denoted by %s and the like, but by ‘{arg_name}’. (This
convention is common for gettext in Perl and is fully supported in GNU Gettext; see
Section “Perl Format Strings” in GNU Gettext.) For example, in the following, ‘{section}’
will be replaced by the section name:

see {section}

These Perl-style brace format strings are used for two reasons: first, changing the order of
printf arguments is only available since Perl 5.8.0; second, and more importantly, the order
of arguments is unpredictable, since @-command expansion may lead to different orders
depending on the output format.

The expansion of a translation string is done like this:

1. First, the string is translated. The locale is documentlanguage.documentencoding.

If the documentlanguage has the form ‘ll_CC’, that is tried first, and then just ‘ll’.

To cope with the possibility of having multiple encodings, a special use of the us-ascii
locale encoding is also possible. If the ‘ll’ locale in the current encoding does not exist,
and the encoding is not us-ascii, then us-ascii is tried.

The idea is that if there is a us-ascii encoding, it means that all the characters in the
charset may be expressed as @-commands. For example, there is a fr.us-ascii locale
that can accommodate any encoding, since all the Latin 1 characters have associated
@-commands. On the other hand, Japanese has only a translation ja.utf-8, since
there are no @-commands for Japanese characters.

The us-ascii locales are not needed much now that UTF-8 is used for most documents.
Note that accented characters are required to be expressed as @-commands in the
us-ascii locales, which may be inconvenient for translators.

2. Next, the string is expanded as Texinfo, and converted. The arguments are substituted;
for example, ‘{arg_name}’ is replaced by the corresponding actual argument.

In the following example, ‘{date}’, ‘{program_homepage}’ and ‘{program}’ are the
arguments of the string. Since they are used in @uref, their order is not predictable.
‘{date}’, ‘{program_homepage}’ and ‘{program}’ are substituted after the expansion:

Generated on @emph{{date}} using

@uref{{program_homepage}, @emph{{program}}}.

This approach is admittedly a bit complicated. Its usefulness is that it supports having
translations available in different encodings for encodings which can be covered by @-
commands, and also specifying how the formatting for some commands is done, independently
of the output format—yet still be language-dependent. For example, the ‘@pxref’ translation
string can be like this:

see {node_file_href} section `{section}' in @cite{{book}}

which allows for specifying a string independently of the output format, while nevertheless
with rich formatting it may be translated appropriately in many languages.

Chapter 19: texi2any: The Translator for Texinfo 192

19.6 Invoking pod2texi: Convert Pod to Texinfo

The pod2texi program translates Perl Pod documentation file(s) to Texinfo. There are
two basic modes of operation: generating a standalone manual from each input Pod, or
(if --base-level=1 or higher is given) generating Texinfo subfiles suitable for use with
@include.

The pod2texi program may be useful outside of the rest of Texinfo; thus, the invocation
of pod2texi is documented in the Pod language using the man page format to follow the
convention used in Perl standalone programs, with a version on the web http://www.gnu.

org/software/texinfo/manual/pod2texi.html and a version included below. The version
included in the manual is also an example of pod2texi use, as it is converted from Pod
using pod2texi.

19.6.1 pod2texi

pod2texi NAME

pod2texi - convert Pod to Texinfo

pod2texi SYNOPSIS

pod2texi [OPTION]... POD...

pod2texi DESCRIPTION

Translate Pod file(s) to Texinfo. There are two basic modes of operation. First, by default,
each Pod is translated to a standalone Texinfo manual.

Second, if --base-level is set higher than 0, each Pod is translated to a file suitable for
@include, and one more file with a main menu and all the @include is generated.

pod2texi OPTIONS

–appendix-sections
Use appendix sectioning commands (@appendix, ...) instead of the default
numbered sectioning Texinfo @-commands (@chapter, @section, ...).

–base-level=NUM|NAME
Sets the level of the head1 commands. It may be an integer or a Texinfo section-
ing command (without the @): 1 corresponds to the @chapter/@unnumbered
level, 2 to the @section level, and so on. The default is 0, meaning that
head1 commands are still output as chapters, but the output is arranged as a
standalone manual.

If the level is not 0, the Pod file is rendered as a fragment of a Texinfo manual
suitable for @include. In this case, each Pod file has an additional sectioning
command covering the entire file, one level above the --base-level value.
Therefore, to make each Pod file a chapter in a large manual, you should use
section as the base level.

For an example of making Texinfo out of the Perl documentation itself, see
contrib/perldoc-all in the Texinfo source distribution.

–debug=NUM
Set debugging level to NUM.

http://www.gnu.org/software/texinfo/manual/pod2texi.html
http://www.gnu.org/software/texinfo/manual/pod2texi.html

Chapter 19: texi2any: The Translator for Texinfo 193

–headings-as-sections
Use headings commands (@heading, ...) instead of the default numbered section-
ing Texinfo @-commands (@chapter, @section, ...). The sectioning command
covering the entire file output for each Pod file if –base-level is not 0 is a
numbered command.

–help

Display help and exit.

–menus

Output node menus. If there is a main manual, its Top node menu is always
output, since a master menu is generated. Other nodes menus are not output in
the default case.

–output=NAME
Name for the first manual, or the main manual if there is a main manual. Default
is to write to standard output.

–no-section-nodes
Use anchors for sections instead of nodes.

–no-fill-section-gaps
Do not fill sectioning gaps with empty @unnumbered files. Ordinarily, it’s good
to keep the sectioning hierarchy intact.

–preamble=STR
Insert STR as top boilerplate before menu and includes. If STR is set to -, read
the top boilerplate from the standard input. The default top boilerplate is a
minimal beginning for a Texinfo document.

–setfilename=STR
Use STR in top boilerplate before menu and includes for @setfilename. No
@setfilename is output in the default case.

–subdir=NAME
If there is a main manual with include files (each corresponding to an input Pod
file), then those include files are put in directory NAME.

–unnumbered-sections
Use unnumbered sectioning commands (@unnumbered, ...) instead of the default
numbered sectioning Texinfo @-commands (@chapter, @section, ...).

–top=TOP
Name of the @top element for the main manual. May contain Texinfo code.

–version

Display version information and exit.

pod2texi SEE ALSO

Pod-Simple-Texinfo. perlpod. The Texinfo manual. Texinfo home page: http://www.
gnu.org/software/texinfo/

http://www.gnu.org/software/texinfo/
http://www.gnu.org/software/texinfo/

Chapter 19: texi2any: The Translator for Texinfo 194

pod2texi COPYRIGHT AND LICENSE

Copyright 2012-2023 Free Software Foundation, Inc.

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

There is NO WARRANTY, to the extent permitted by law.

pod2texi AUTHOR

Patrice Dumas <bug-texinfo@gnu.org>.

19.7 texi2html: Ancestor of texi2any

Conceptually, the texi2html program is the parent of today’s texi2any program.
texi2html was developed independently, originally by Lionel Cons in 1998; at the time,
makeinfo could not generate HTML. Many other people contributed to texi2html over
the years.

The present texi2any uses little of the actual code of texi2html, and has quite a different
basic approach to the implementation (namely, parsing the Texinfo document into a tree),
but still, there is a family resemblance.

By design, texi2any supports nearly all the features of texi2html in some way. However,
we did not attempt to maintain strict compatibility, so no texi2html executable is installed
by the Texinfo package. An approximation can be run with an invocation like this:

texi2any --set-customization-variable TEXI2HTML=1 ...

but, to emphasize, this is not a drop-in replacement for the previous texi2html. Here are
the biggest differences:

• Most blatantly, the command line options of texi2html are now customization variables,
for the most part. A table of approximate equivalents is given below.

• The program-level customization API is very different in texi2any.

• Indices cannot be split.

We do not intend to reimplement these differences. Therefore, the route forward for
authors is alter manuals and build processes as necessary to use the new features and
methods of texi2any. The texi2html maintainers (one of whom is the principal author of
texi2any) do not intend to make further releases.

Here is the table showing texi2html options and corresponding texi2any customization
variables.

--toc-links TOC_LINKS

--short-ext EXTENSION set to ‘htm’
--prefix PREFIX

--def-table DEF_TABLE

--html-xref-prefix EXTERNAL_DIR

--l2h HTML_MATH set to ‘l2h’
--l2h-l2h L2H_L2H

--l2h-skip L2H_SKIP

Chapter 19: texi2any: The Translator for Texinfo 195

--l2h-tmp L2H_TMP

--l2h-file L2H_FILE

--l2h-clean L2H_CLEAN

--use-nodes USE_NODES

--monolithic MONOLITHIC

--top-file TOP_FILE

--frames FRAMES

--menu FORMAT_MENU

--debug DEBUG

--doctype DOCTYPE

--frameset-doctype FRAMESET_DOCTYPE

--test TEST

Finally, any texi2html users seeking more detailed information can check the first part
of the archived file doc/texi2oldapi.texi in the Texinfo source repository.

196

20 Creating and Installing Info Files

This chapter gives some information on the Info output and describes how to install Info files.
For the creation of Info files with texi2any, see Chapter 19 [Generic Translator texi2any],
page 164, and with Emacs, Section D.6 [Info Formatting], page 261. See Section 1.3 [Info
Files], page 4, for general information about the file format. See Appendix F [Info Format
Specification], page 283, for a detailed technical specification of the Info format.

20.1 Installing an Info File

Info files are usually kept in the info directory. You can read Info files using the standalone
Info program or the Info reader built into Emacs. (See Info, for an introduction to Info.)

20.1.1 The Directory File dir

For Info to work, the info directory must contain a file that serves as a top-level directory
for the Info system. By convention, this file is called dir. (You can find the location of this
file within Emacs by typing C-h i to enter Info and then typing C-x C-f to see the location
of the info directory.)

The dir file is itself an Info file. It contains the top-level menu for all the Info files in the
system. The menu looks like this:

* Menu:

* Info: (info). Documentation browsing system.

* Emacs: (emacs). The extensible, self-documenting

text editor.

* Texinfo: (texinfo). With one source file, make

either a printed manual using

@TeX{} or an Info file.

...

Each of these menu entries points to the ‘Top’ node of the Info file that is named in
parentheses. (The menu entry does not need to specify the ‘Top’ node, since Info goes to
the ‘Top’ node if no node name is mentioned. See Section 3.9.6 [Nodes in Other Info Files],
page 37.)

Thus, the ‘Info’ entry points to the ‘Top’ node of the info file and the ‘Emacs’ entry
points to the ‘Top’ node of the emacs file.

In each of the Info files, the ‘Up’ pointer of the ‘Top’ node refers back to the dir file.
For example, the line for the ‘Top’ node of the Emacs manual looks like this in Info:

File: emacs Node: Top, Up: (DIR), Next: Distrib

In this case, the dir file name is written in uppercase letters—it can be written in either
upper- or lowercase. This is not true in general, it is a special case for dir.

See the util/dir-example file in the Texinfo distribution for a large sample dir file.

20.1.2 Listing a New Info File

To add a new Info file to your system, you must write a menu entry to add to the menu in
the dir file in the info directory. For example, if you were adding documentation for GDB,
you would write the following new entry:

* GDB: (gdb). The source-level C debugger.

Chapter 20: Creating and Installing Info Files 197

The first part of the menu entry is the menu entry name, followed by a colon. The second
part is the name of the Info file, in parentheses, followed by a period. The third part is the
description.

The name of an Info file often has a .info extension. Thus, the Info file for GDB might
be called either gdb or gdb.info. The Info reader programs automatically try the file name
both with and without .info1; so it is better to avoid clutter and not to write ‘.info’
explicitly in the menu entry. For example, the GDB menu entry should use just ‘gdb’ for
the file name, not ‘gdb.info’.

20.1.3 Info Files in Other Directories

If an Info file is not in the info directory, there are three ways to specify its location:

1. Write the file name in the dir file as the second part of the menu.

2. Specify the Info directory name in the INFOPATH environment variable in your .profile
or .cshrc initialization file. (Only you and others who set this environment variable
will be able to find Info files whose location is specified this way.)

3. If you are using Emacs, list the name of the file in a second dir file, in its directory;
and then add the name of that directory to the Info-directory-list variable in your
personal or site initialization file.

This variable tells Emacs where to look for dir files (the files must be named dir).
Emacs merges the files named dir from each of the listed directories. (In Emacs version
18, you can set the Info-directory variable to the name of only one directory.)

For example, to reach a test file in the /home/bob/info directory, you could add an
entry like this to the menu in the standard dir file:

* Test: (/home/bob/info/info-test). Bob's own test file.

In this case, the absolute file name of the info-test file is written as the second part of the
menu entry.

If you don’t want to edit the system dir file, you can tell Info where to look by setting
the INFOPATH environment variable in your shell startup file. This works with both the
Emacs and standalone Info readers.

Emacs uses the INFOPATH environment variable to initialize the value of Emacs’s own
Info-directory-list variable. The standalone Info reader merges any files named dir in
any directory listed in the INFOPATH variable into a single menu presented to you in the
node called ‘(dir)Top’.

However you set INFOPATH, if its last character is a colon (on MS-DOS/MS-Windows
systems, use a semicolon instead), this is replaced by the default (compiled-in) path. This
gives you a way to augment the default path with new directories without having to list all
the standard places. For example (using sh syntax):

INFOPATH=/home/bob/info:

export INFOPATH

will search /home/bob/info first, then the standard directories. Leading or doubled colons
are not treated specially.

1 On MS-DOS/MS-Windows systems, Info will try the .inf extension as well.

Chapter 20: Creating and Installing Info Files 198

When you create your own dir file for use with Info-directory-list or INFOPATH, it’s
easiest to start by copying an existing dir file and replace all the text after the ‘* Menu:’
with your desired entries. That way, the punctuation and special CTRL-_ characters that
Info needs will be present.

As one final alternative, which works only with Emacs Info, you can change the Info-

directory-list variable. For example:

(add-hook 'Info-mode-hook '(lambda ()

(add-to-list 'Info-directory-list

(expand-file-name "~/info"))))

20.1.4 Installing Info Directory Files

When you install an Info file onto your system, you can use the program install-info to
update the Info directory file dir. Normally the makefile for the package runs install-info,
just after copying the Info file into its proper installed location.

In order for the Info file to work with install-info, you include the commands
@dircategory and @direntry. . .@end direntry in the Texinfo source file. Use @direntry
to specify the menu entries to add to the Info directory file. Use @dircategory to specify a
category for the manual, which determines which part of the Info directory to put it in. See
Section 2.6 [Directory Category], page 16.

Here is how these commands are used in this manual:

@dircategory Texinfo documentation system

@direntry

* Texinfo: (texinfo). The GNU documentation format.

* install-info: (texinfo)Invoking install-info. ...

...

@end direntry

Here’s what this produces in the Info file:

INFO-DIR-SECTION Texinfo documentation system

START-INFO-DIR-ENTRY

* Texinfo: (texinfo). The GNU documentation format.

* install-info: (texinfo)Invoking install-info. ...

...

END-INFO-DIR-ENTRY

The install-info program sees these lines in the Info file, and that is how it knows what
to do.

Always use the @direntry and @dircategory commands near the beginning of the
Texinfo input, before the first @node command. If you use them later on in the input,
install-info will not notice them.

install-info will automatically reformat the description of the menu entries it is adding.
As a matter of convention, the description of the main entry (above, ‘The GNU documentation

format’) should start at column 32, starting at zero (as in what-cursor-position in Emacs).
This will make it align with most others. Description for individual utilities best start in
column 48, where possible. For more information about formatting see the ‘--calign’,
‘--align’, and ‘--max-width’ options in Section 20.1.5 [Invoking install-info], page 199.

Chapter 20: Creating and Installing Info Files 199

If you use @dircategory more than once in the Texinfo source, each usage specifies the
‘current’ category; any subsequent @direntry commands will add to that category.

Each ‘Invoking’ node for every program installed should have a corresponding @direntry.
This lets users easily find the documentation for the different programs they can run, as
with the traditional man system.

20.1.5 Invoking install-info

install-info inserts menu entries from an Info file into the top-level dir file in the Info
system (see the previous sections for an explanation of how the dir file works). install-
info also removes menu entries from the dir file. It’s most often run as part of software
installation, or when constructing a dir file for all manuals on a system. Synopsis:

install-info [option...] [info-file [dir-file]]

If info-file or dir-file are not specified, the options (described below) that define them must
be. There are no compile-time defaults, and standard input is never used. install-info
can read only one Info file and write only one dir file per invocation.

If dir-file (however specified) does not exist, install-info creates it if possible (with no
entries).

If any input file is compressed with gzip (see Gzip), install-info automatically un-
compresses it for reading. And if dir-file is compressed, install-info also automatically
leaves it compressed after writing any changes. If dir-file itself does not exist, install-info
tries to open dir-file.gz, dir-file.xz, dir-file.bz2, dir-file.lz, and dir-file.lzma, in that order.

Options:

--add-once

Specifies that the entry or entries will only be put into a single section.

--align=column
Specifies the column that the second and subsequent lines of menu entry’s
description will be formatted to begin at. The default for this option is ‘35’. It
is used in conjunction with the ‘--max-width’ option. column starts counting
at 1.

--append-new-sections

Instead of alphabetizing new sections, place them at the end of the DIR file.

--calign=column
Specifies the column that the first line of menu entry’s description will be
formatted to begin at. The default for this option is ‘33’. It is used in conjunction
with the ‘--max-width’ option. When the name of the menu entry exceeds
this column, entry’s description will start on the following line. column starts
counting at 1.

--debug Report what is being done.

--delete Delete the entries in info-file from dir-file. The file name in the entry in dir-file
must be info-file (except for an optional ‘.info’ in either one). Don’t insert any
new entries. Any empty sections that result from the removal are also removed.

Chapter 20: Creating and Installing Info Files 200

--description=text
Specify the explanatory portion of the menu entry. If you don’t specify a
description (either via ‘--entry’, ‘--item’ or this option), the description is
taken from the Info file itself.

--dir-file=name
Specify file name of the Info directory file. This is equivalent to using the dir-file
argument.

--dry-run

Same as ‘--test’.

--entry=text
Insert text as an Info directory entry; text should have the form of an Info menu
item line plus zero or more extra lines starting with whitespace. If you specify
more than one entry, they are all added. If you don’t specify any entries, they
are determined from information in the Info file itself.

--help Display a usage message with basic usage and all available options, then exit
successfully.

--info-file=file
Specify Info file to install in the directory. This is equivalent to using the info-file
argument.

--info-dir=dir
Specify the directory where the directory file dir resides. Equivalent to
‘--dir-file=dir/dir’.

--infodir=dir
Same as ‘--info-dir’.

--item=text
Same as ‘--entry=text’. An Info directory entry is actually a menu item.

--keep-old

Do not replace pre-existing menu entries. When ‘--remove’ is specified, this
option means that empty sections are not removed.

--max-width=column
Specifies the column that the menu entry’s description will be word-wrapped at.
column starts counting at 1.

--maxwidth=column
Same as ‘--max-width’.

--menuentry=text
Same as ‘--name’.

--name=text
Specify the name portion of the menu entry. If the text does not start with an
asterisk ‘*’, it is presumed to be the text after the ‘*’ and before the parentheses
that specify the Info file. Otherwise text is taken verbatim, and is taken as
defining the text up to and including the first period (a space is appended if

Chapter 20: Creating and Installing Info Files 201

necessary). If you don’t specify the name (either via ‘--entry’, ‘--item’ or this
option), it is taken from the Info file itself. If the Info does not contain the
name, the basename of the Info file is used.

--no-indent

Suppress formatting of new entries into the dir file.

--quiet

--silent Suppress warnings, etc., for silent operation.

--remove Same as ‘--delete’.

--remove-exactly

Also like ‘--delete’, but only entries if the Info file name matches exactly;
.info and/or .gz suffixes are not ignored.

--section=sec
Put this file’s entries in section sec of the directory. If you specify more than one
section, all the entries are added in each of the sections. If you don’t specify any
sections, they are determined from information in the Info file itself. If the Info
file doesn’t specify a section, the menu entries are put into the Miscellaneous
section.

--section regex sec
Same as ‘--regex=regex --section=sec --add-once’.

install-info tries to detect when this alternate syntax is used, but does not
always guess correctly. Here is the heuristic that install-info uses:

1. If the second argument to --section starts with a hyphen, the original
syntax is presumed.

2. If the second argument to --section is a file that can be opened, the
original syntax is presumed.

3. Otherwise the alternate syntax is used.

When the heuristic fails because your section title starts with a hyphen, or
it happens to be a file that can be opened, the syntax should be changed to
‘--regex=regex --section=sec --add-once’.

--regex=regex
Put this file’s entries into any section that matches regex. If more than one
section matches, all of the entries are added in each of the sections. Specify
regex using basic regular expression syntax, more or less as used with grep, for
example.

--test Suppress updating of the directory file.

--version

Display version information and exit successfully.

20.2 Tag Files and Split Files

Info files always contain a tag table, to be able to jump to nodes quickly. Info files can be
nonsplit (also called unsplit) or split.

Chapter 20: Creating and Installing Info Files 202

If the Info file contains less than about 300,000 characters the file should be nonsplit.
In that case, the tag table should appear at the end of the Info file. If the Texinfo file
contains more than about 300,000 characters, Texinfo processors split the large Info file into
shorter indirect subfiles of about 300,000 characters each. With texi2any, splitting may be
prevented by --no-split, and the default size of 300,000 characters may be modified with
--split-size (see Section 19.1 [Invoking texi2any], page 164).

When a file is split, Info itself makes use of a shortened version of the original file that
contains just the tag table and references to the files that were split off. The split-off files
are called indirect files.

The split-off files have names that are created by appending ‘-1’, ‘-2’, ‘-3’ and so on to
the output file name, specified by the @setfilename command or the input file name. The
shortened version of the original file continues to have the name specified by @setfilename

or the input file name.

At one stage in writing this document, for example, the Info file was saved as the file
test-texinfo and that file looked like this:

Info file: test-texinfo, -*-Text-*-

produced by texinfo-format-buffer

from file: new-texinfo-manual.texinfo

^_

Indirect:

test-texinfo-1: 102

test-texinfo-2: 50422

test-texinfo-3: 101300

^_^L

Tag table:

(Indirect)

Node: overview^?104

Node: info file^?1271

Node: printed manual^?4853

Node: conventions^?6855

...

(But test-texinfo had far more nodes than are shown here.) Each of the split-off, indirect
files, test-texinfo-1, test-texinfo-2, and test-texinfo-3, is listed in this file after the
line that says ‘Indirect:’. The tag table is listed after the line that says ‘Tag table:’.

In the list of indirect files, the number following the file name records the cumulative
number of bytes in the preceding indirect files, not counting the file list itself, the tag table,
or any permissions text in the first file. In the tag table, the number following the node
name records the location of the beginning of the node, in bytes from the beginning of the
(unsplit) output.

If you are using texinfo-format-buffer to create Info files, you may want to run the
Info-validate command. (The texi2any command does such a good job on its own,
you do not need Info-validate.) However, you cannot run the M-x Info-validate node-
checking command on indirect files. For information on how to prevent files from being

Chapter 20: Creating and Installing Info Files 203

split with texinfo-format-buffer and how to validate the structure of the nodes, see
Section D.10.4.1 [Using Info-validate], page 272.

20.3 Info Format FAQ

Here are some questions that have been frequently asked on the project mailing lists and
elsewhere.

Why when I run ‘info foo’ do I get the same output as ‘man foo’?
Check that the Info manuals are installed. Not all GNU/Linux distributions
install all the Info manuals by default. This is regrettable, as often the Info
manual provides more information than the provided man page.

Why not use HTML instead of Info?
Manuals are rarely written in the Info format itself, but are generated from
Texinfo source by the texi2any program. texi2any can generate HTML as well
as Info from Texinfo source. You can also access and download HTML manuals
from the GNU website (https://www.gnu.org/manual/manual.html). Addi-
tionally, some GNU/Linux distributions provide packages for the installation of
HTML manuals.

Info still has some advantages over HTML for locally installed documentation.
The Info browsers support index lookup and support for links between locally
installed manuals in multiple locations. It’s important to have documentation
installed locally on your machine rather than relying on the Internet; this makes
accessing documentation more reliable, and ensures it matches installed versions
of packages. It’s hoped that support for browsing locally installed Texinfo
documentation in some form of HTML can be improved in the future.

Why provide the command-line info program when the Emacs Info reader is better?
The Emacs Info reader can display images, and fully supports using a mouse.
There are not many differences among the Info readers besides that. Command-
line info can be configured to change the default key bindings, as well as change
the color of cross-references and search results, and to enable mouse scrolling
support. You should not need to be experienced with the Emacs editor to
use info. (Some recommend another program called pinfo, but this lacks in
important features like index lookup.)

Some prefer to be able to scroll through the entire manual at once (as happens
with man pages), rather than being limited to a single ‘node’ of content at once.
Of course, there is no accounting for taste, but a single, unstructured block of
text becomes more awkward as a manual becomes longer and more complicated.
(However, if you really want to, you can view an info manual all at once in the
less pager with ‘info foo | less’.)

Why do I have ‘see’ appearing in front of all of my links?
By default, Emacs Info mode either changes the marker ‘*note’ for cross-
references to ‘see’, or hides it completely. Command-line info does the same if
hide-note-references is set. Unfortunately, there is no way to do this reliably,
as both the @pxref and @ref commands in Texinfo output this marker in the
Info output, and the ‘see’ text is only appropriate for @pxref.

https://www.gnu.org/manual/manual.html

Chapter 20: Creating and Installing Info Files 204

Yes, but how do I get a plain link, with no extra markup?
You can’t. Info is a plain text format that is displayed mostly as-is in the viewers,
and without the ‘*note’ text there would be nothing to mark text as a link.

For output formats such as HTML, you can use the @link command to produce
a plain link. See Section 5.12 [@link], page 51. This does not produce a working
cross-reference in Info output or in a printed copy of the manual, though.

Why do lines containing links appear mysteriously short?
This due to Emacs (or info with hide-note-references set to ‘On’) hiding
‘*note’ strings, as mentioned above.

Can the Info format be extended to support fonts, colors or reflowable text?
Any extension would be incompatible with existing Info-viewing programs. Extra
markup added to Info files would be displayed to the user, making files ugly and
unreadable.

When Texinfo files are processed into Info files, information about which Texinfo
commands were used to markup text is lost. Moreover, it is not possible to
reliably detect whether text can be reflowed (e.g. a paragraph of prose), or
whether line breaks should be kept (e.g. a code sample, or poem).

Info’s core purpose is to display documentation on text terminals. If you want
more, you are recommended to use the HTML output from texi2any instead.

205

21 Generating HTML

texi2any generates Info output by default, but given the --html option, it will generate
HTML, for web browsers and other programs. This chapter gives some details on such
HTML output.

texi2any has many user-definable customization variables with which you can influence
the HTML output. See Section 19.4 [Customization Variables], page 172. In particular,
there is support for syntax highlighting in @example (see Section 21.6 [Syntax Highlighting],
page 209). You can also write so-called initialization files, or init files for short, to modify
almost every aspect of HTML output formatting. Initialization files contain code and are
loaded by --init-file (see Section 19.1 [Invoking texi2any], page 164).

Some initialization files are maintained with Texinfo and installed in the default case.
For example, chm.pm produces the intermediate compressed HTML Help format files that
can be subsequently converted to the CHM format.

The documentation of texi2any HTML output adaptation using customization files is
in a separate manual. See GNU Texinfo texi2any Output Customization.

21.1 HTML Translation

The HTML generated by texi2any generates standard HTML output. The output is
intentionally quite plain for maximum portability and accessibility.

You can customize the output via CSS (see Section 21.3 [HTML CSS], page 206) or other
means (see Section 19.4 [Customization Variables], page 172). If you cannot accomplish a
reasonable customization, feel free to report that.

Navigation bar: By default, a navigation bar is inserted at the start of each node,
analogous to Info output. If the ‘--no-headers’ option is used, the navigation bar is only
inserted at the beginning of split files. Header <link> elements in split output support
Info-like navigation with browsers which implement this feature.

Raw HTML: texi2any will include segments of Texinfo source between @ifhtml and
@end ifhtml in the HTML output (but not any of the other conditionals, by default). Source
between @html and @end html is passed without change to the output (i.e., suppressing the
normal escaping of input ‘<’, ‘>’ and ‘&’ characters which have special significance in HTML).
See Section 15.1 [Conditional Commands], page 134.

Standards: It is intentionally not our goal, and not even always possible, to pass through
every conceivable validation test without any diagnostics. Different validation tests have
different goals, often about pedantic enforcement of some standard or another. Our overriding
goal is to help users, not blindly comply with standards.

Please report output from an error-free run of texi2any which has practical browser or
EPUB reader portability problems as a bug (see Section 1.1 [Reporting Bugs], page 2).

In practice, the HTML produced by texi2any is slowly adjusted over time towards the
latest HTML standard, while also trying to keep compatibility with earlier produced HTML.
We use transitional markup and try to be slow enough to give time for the diverse HTML
readers to adjust (and for standards to reincorporate useful features that were dropped. . .).

Chapter 21: Generating HTML 206

21.2 HTML Splitting

When splitting output at nodes (which is the default), texi2any writes HTML output into
(basically) one output file per Texinfo source @node.

Each output file name is the node name with spaces replaced by ‘-’’s and special characters
changed to ‘_’ followed by their code point in hex (see Section 21.7 [HTML Xref], page 209).
This is to make it portable and easy to use as a file name. In the unusual case of two
different nodes having the same name after this treatment, they are written consecutively to
the same file, with HTML anchors so each can be referred to independently.

If texi2any is run on a system which does not distinguish case in file names, nodes which
are the same except for case (e.g., ‘index’ and ‘Index’) will also be folded into the same
output file with anchors. You can also pretend to be on a case insensitive filesystem by
setting the customization variable CASE_INSENSITIVE_FILENAMES.

It is also possible to split at chapters or sections with --split (see Section 19.1 [Invoking
texi2any], page 164). In that case, the file names are constructed after the name of the node
associated with the relevant sectioning command. Also, unless --no-node-files is specified,
a redirection file is output for every node in order to more reliably support cross-references
to that manual (see Section 21.7 [HTML Xref], page 209).

When splitting, the HTML output files are written into a subdirectory. The subdirectory
name is derived from the base name (that is, any extension is removed), with _html

postpended. For example, HTML output for gcc.texi would be written into a subdirectory
named ‘gcc_html/’. The subdirectory name is based on @setfilename or on the input file
name (see [Setting the Output File Name], page 13).

In any case, the top-level output file within the directory is always named ‘index.html’.

Monolithic output (--no-split) is named according to @setfilename, if present (with
any ‘.info’ extension replaced with ‘.html’), --output (the argument is used literally), or
based on the input file name as a last resort (see [Setting the Output File Name], page 13).

21.3 HTML CSS

Cascading Style Sheets (CSS) is an Internet standard for influencing the display of HTML
documents: see http://www.w3.org/Style/CSS/.

By default, some CSS code is included to better implement the appearance of some
Texinfo environments. For example:

pre.display { font-family:inherit }

The above tells the web browser to use the same font as the main document inside ‘<pre>’
elements used for @display environments. By default, the HTML ‘<pre>’ command uses a
monospaced font.

Please see the reference above for a full explanation of CSS.

You can influence the CSS in the HTML output with two texi2any options: --css-

include=file and --css-ref=url.

The option --css-ref=url adds to each output HTML file a ‘<link>’ tag referencing a
CSS at the given url. This allows using external style sheets.

The option --css-include=file includes the contents file in the HTML output, as you
might expect. However, the details are somewhat tricky, as described in the following, to
provide maximum flexibility.

http://www.w3.org/Style/CSS/

Chapter 21: Generating HTML 207

The CSS file first line may be a ‘@charset’ directive. If present, this directive is used to
determine the encoding of the CSS file. The line is not copied into the output.

The CSS file may begin with so-called ‘@import’ directives, which link to external CSS
specifications for browsers to use when interpreting the document. Again, a full description
is beyond our scope here, but we’ll describe how they work syntactically, so we can explain
how they are handled.

There can be more than one ‘@import’, but they have to come first in the file, with only
whitespace and comments interspersed, no normal definitions. Comments in CSS files are
delimited by ‘/* ... */’, as in C. An ‘@import’ directive must be in one of these two forms:

@import url(http://example.org/foo.css);

@import "http://example.net/bar.css";

The crucial characters are the ‘@’ at the beginning and the semicolon terminating the
directive. When reading the CSS file, any such ‘@’-directive is simply copied into the output,
as follows:

• If file contains only normal CSS declarations, it is included after the default CSS, thus
overriding it.

• If file begins with ‘@import’ specifications (see below), then the ‘import’’s are included
first (they have to come first, according to the standard), and then the default CSS is
included. If you need to override the default CSS from an ‘@import’, you can do so
with the ‘! important’ CSS construct, as in:

pre.example { font-size: inherit ! important }

• If file contains both ‘@import’ and inline CSS specifications, the ‘@import’’s are included
first, then default CSS, and lastly the inline CSS from file.

• Any @-directive other than ‘@import’ and ‘@charset’ is treated as a CSS declaration,
meaning the default CSS is included and then the rest of the file is prepended.

If the CSS file is malformed or erroneous, the output is unspecified. The meaning of
the CSS file is not interpreted in any way; the special ‘@’ and ‘;’ characters are looked for
the text is blindly copied into the output. Comments in the CSS file may or may not be
included in the output.

In addition to the possibilities offered by CSS, texi2any has many user-definable cus-
tomization variables with which you can influence the HTML output. See Section 19.4
[Customization Variables], page 172.

21.4 @documentdescription: Summary Text

When producing HTML output for a document, a ‘<meta>’ element is written in the ‘<head>’
to give some idea of the content of the document. By default, this description is the title of
the document, taken from the @settitle command (see Section 2.5.3 [@settitle], page 14).
To change this, use the @documentdescription environment, as in:

@documentdescription

descriptive text.

@end documentdescription

This will produce the following output in the ‘<head>’ of the HTML:

<meta name=description content="descriptive text.">

Chapter 21: Generating HTML 208

21.5 Generating EPUB

EPUB is a format designed for reading electronic books on portable devices. texi2any

generated EPUB 3.2 in 2022. An EPUB file is a ZIP archive container, holding informative
files as well as the manual rendered in HTML.

The generation of the EPUB file depends on the Archive::Zip Perl module being
installed. This dependency is checked at runtime. In the default case, trying to output
EPUB without this dependency raises an error. However, if the EPUB output file is not
generated, with the customization variable EPUB_CREATE_CONTAINER_FILE set to 0, it is not
an error if Archive::Zip is not installed.

The texi2any tests related to EPUB generation do not require the installation of
Archive::Zip, as they set EPUB_CREATE_CONTAINER_FILE to 0 and keep the directory
containing the files and directories needed for the EPUB file by setting the EPUB_KEEP_

CONTAINER_FOLDER customization variable to 1.

21.5.1 Container Directory and Output Files

A directory containing the files and directories needed for the EPUB format is created when
outputting EPUB. The name of this container directory is derived from the base name of
the input file (that is, any extension is removed), with _epub_package postpended. If an
output directory is specified, with --output, or with the SUBDIR customization variable,
the container directory is created in that directory instead of the current directory. At
the beginning of a new run, the container directory and all its contents are removed. The
container directory is also removed after the final EPUB file has been generated in the
default case.

The HTML files produced from the Texinfo manual are output in subdirectories of the
container directory. Image files referred to from the Texinfo manual, if found, are copied to
subdirectories of the container directory.

The EPUB output file is a ZIP archive of the container directory. The file name is derived
from the base name, with the .epub extension postpended. If an output file is specified,
with --output, or with the OUTFILE customization function, this file name is used instead.
The output EPUB file is never placed in the directory specified by --output or SUBDIR;
only the container directory is placed there, as explained just above.

The EPUB output file is not generated if the customization variable EPUB_CREATE_

CONTAINER_FILE is set to 0. The container directory is left after the final EPUB file has
been generated if EPUB_KEEP_CONTAINER_FOLDER is set.

See Section 19.1 [Invoking texi2any], page 164.

21.5.2 EPUB Cross-References

The EPUB format does not support references from an EPUB file to another EPUB file.
Therefore any references to “external” Texinfo manuals should resolve to an external URL.
texi2any produces these links with HTML cross-reference configuration (see Section 21.7.6
[HTML Xref Configuration], page 214). Since the links in the resulting EPUB are incorrect
if no information is found for the cross-references, texi2any issues a warning by default for
missing cross-references information. If these warnings are unwanted, set CHECK_HTMLXREF
to 0.

Chapter 21: Generating HTML 209

21.5.3 HTML Generated for EPUB

The HTML generated for EPUB is XHTML conformant, UTF-8 encoded, and formatted
without the usual HTML navigation headers and footers. Most of these features are enabled
with customization variables, such as USE_XML_SYNTAX or OUTPUT_FILE_NAME_ENCODING.
Some features of printed output are used in EPUB. In particular, the Top node does not
appear in the EPUB output, while a title page is generated. This is obtained by setting
NO_TOP_NODE_OUTPUT.

The OUTFILE and SUBDIR customization variables values correspond initially to the EPUB
directory container and/or the EPUB output file (see Section 21.5.1 [EPUB Output File
and Directory], page 208). These customization variables values are undefined or reset
to the locations in the container directory where the XHTML files are output for the
HTML generation. It is mentioned here because resetting customization variables is unusual;
however, the variables reset are used internally for the conversion, and should not interact
with any customization set by the user.

See Section 19.4.3 [HTML Customization Variables], page 174.

21.6 Code Examples Syntax Highlighting in HTML� �
warning: Source highlighting is experimental, feedback is welcomed.
 	

Support for source code syntax highlighting is available in texi2any for the HTML output,
with the help of external software. This feature is turned on by setting HIGHLIGHT_SYNTAX.
Source code highlighting is set up for @example blocks. The language specified for syntax
highlighting is the first argument on the @example line (see Section 7.4 [@example], page 68),
or HIGHLIGHT_SYNTAX_DEFAULT_LANGUAGE if set and there is no first argument.

The HIGHLIGHT_SYNTAX value determines the command used for highlighting:

highlight

Use highlight from http://www.andre-simon.de/doku/highlight/en/

highlight.php;

pygments Use pygmentize from https://pygments.org/;

anything else

Use source-highlight (see GNU Source-highlight).

See Section 19.4.8 [Other Customization Variables], page 183.

21.7 HTML Cross-references

Cross-references between Texinfo manuals in HTML format become standard HTML <a>

links. This section describes the algorithm used, so that Texinfo can cooperate with other
programs, such as texi2html, by writing mutually compatible HTML files.

This algorithm may or may not be used for links within HTML output for a Texinfo file.
Since no issues of compatibility arise in such cases, we do not need to specify this.

We try to support references to such “external” manuals in both monolithic and split
forms. A monolithic (mono) manual is entirely contained in one file, and a split manual has
a file for each node. (See Section 21.2 [HTML Splitting], page 206.)

http://www.andre-simon.de/doku/highlight/en/highlight.php
http://www.andre-simon.de/doku/highlight/en/highlight.php
https://pygments.org/

Chapter 21: Generating HTML 210

The algorithm was primarily devised by Patrice Dumas in 2003–04.

21.7.1 HTML Cross-reference Link Basics

For our purposes, an HTML link consists of four components: a host name, a directory part,
a file part, and a target part. We always assume the http protocol. For example:

http://host/dir/file.html#target

The information to construct a link comes from the node name and manual name in the
cross-reference command in the Texinfo source (see Chapter 5 [Cross References], page 44),
and from external information (see Section 21.7.6 [HTML Xref Configuration], page 214).

We now consider each part in turn.

The host is hardwired to be the local host. This could either be the literal string
‘localhost’, or, according to the rules for HTML links, the ‘http://localhost/’ could be
omitted entirely.

The dir and file parts are more complicated, and depend on the relative split/mono
nature of both the manual being processed and the manual that the cross-reference refers
to. The underlying idea is that there is one directory for Texinfo manuals in HTML, and a
given manual is either available as a monolithic file manual.html, or a split subdirectory
manual_html/*.html. Here are the cases:

• If the present manual is split, and the referent manual is also split, the directory is
‘../referent_html/’ and the file is the expanded node name (described later).

• If the present manual is split, and the referent manual is mono, the directory is ‘../’
and the file is referent.html.

• If the present manual is mono, and the referent manual is split, the directory is referent_
html/ and the file is the expanded node name.

• If the present manual is mono, and the referent manual is also mono, the directory is
./ (or just the empty string), and the file is referent.html.

Another rule, that only holds for file names, is that base file names are truncated to 245
characters, to allow for an extension to be appended and still comply with the 255-character
limit which is common to many filesystems. Although technically this can be changed with
the BASEFILENAME_LENGTH customization variable (see Section 19.4.8 [Other Customization
Variables], page 183), doing so would make cross-manual references to such nodes invalid.

Any directory part in the file name argument of the source cross reference command is
ignored. Thus, @xref{,,,../foo} and @xref{,,,foo} both use ‘foo’ as the manual name.
This is because any such attempted hardwiring of the directory is very unlikely to be useful
for all the output formats that use the manual name.

Finally, the target part is always the expanded node name.

Whether the present manual is split or mono is determined by user option; texi2any
defaults to split, with the --no-split option overriding this.

Whether the referent manual is split or mono, however, is another bit of the external
information (see Section 21.7.6 [HTML Xref Configuration], page 214). By default, texi2any
uses the same form of the referent manual as the present manual.

Thus, there can be a mismatch between the format of the referent manual that the
generating software assumes, and the format it’s actually present in. See Section 21.7.5
[HTML Xref Mismatch], page 214.

Chapter 21: Generating HTML 211

21.7.2 HTML Cross-reference Node Name Expansion

As mentioned in the previous section, the key part of the HTML cross reference algorithm
is the conversion of node names in the Texinfo source into strings suitable for XHTML
identifiers and file names. The restrictions are similar for each: plain ASCII letters, numbers,
and the ‘-’ and ‘_’ characters are all that can be used. (Although HTML anchors can contain
most characters, XHTML is more restrictive.)

Cross-references in Texinfo can refer either to nodes, anchors (see Section 5.11 [@anchor],
page 50) or float labels (see Section 9.1.1 [@float], page 84). However, anchors and float
labels are treated identically to nodes in this context, so we’ll continue to say “node” names
for simplicity.

A special exception: the Top node (see Section 2.10 [The Top Node], page 23) is always
mapped to the file index.html, to match web server software. However, the HTML target
is ‘Top’. Thus (in the split case):

@xref{Top,,, emacs, The GNU Emacs Manual}.

⇒

1. The standard ASCII letters (a-z and A-Z) are not modified. All other characters may
be changed as specified below.

2. The standard ASCII numbers (0-9) are not modified except when a number is the first
character of the node name. In that case, see below.

3. Multiple consecutive space, tab and newline characters are transformed into just one
space.

4. Leading and trailing spaces are removed.

5. After the above has been applied, each remaining space character is converted into a ‘-’
character.

6. Other ASCII 7-bit characters are transformed into ‘_00xx’, where xx is the ASCII
character code in (lowercase) hexadecimal. This includes ‘_’, which is mapped to
‘_005f’.

7. If the node name does not begin with a letter, the literal string ‘g_t’ is prefixed to the
result. (Due to the rules above, that string can never occur otherwise; it is an arbitrary
choice, standing for “GNU Texinfo”.) This is necessary because XHTML requires that
identifiers begin with a letter.

For example:

@node A node --- with _'%

⇒ A-node-_002d_002d_002d-with-_005f_0027_0025

Example translations of common characters:

• ‘_’ ⇒ ‘_005f’

• ‘-’ ⇒ ‘_002d’

• ‘A node’ ⇒ ‘A-node’

On case-folding computer systems, nodes differing only by case will be mapped to the
same file. In particular, as mentioned above, Top always maps to the file index.html. Thus,
on a case-folding system, Top and a node named ‘Index’ will both be written to index.html.
Fortunately, the targets serve to distinguish these cases, since HTML target names are
always case-sensitive, independent of operating system.

Chapter 21: Generating HTML 212

21.7.3 HTML Cross-reference Command Expansion

Node names may contain @-commands (see Section 3.3 [Node Line Requirements], page 29).
This section describes how they are handled.

First, comments are removed.

Next, any @value commands (see Section 15.5.1 [@set @value], page 138) and macro
invocations (see Section 16.2 [Invoking Macros], page 145) are fully expanded.

Then, for the following commands, the command name and braces are removed, and the
text of the argument is recursively transformed:

@asis @b @cite @code @command @dfn @dmn @dotless

@emph @env @file @i @indicateurl @kbd @key

@samp @sansserif @sc @slanted @strong @sub @sup

@t @U @var @verb @w

In addition, the following commands are replaced by constant text, as shown below. If
any of these commands have non-empty arguments, as in @TeX{bad}, it is an error, and the
result is unspecified. In this table, ‘(space)’ means a space character and ‘(nothing)’ means
the empty string. The notation ‘U+hhhh’ means Unicode code point hhhh (in hex, as usual).

There are further transformations of many of these expansions to yield the final file or
other target name, such as space characters to ‘-’, etc., according to the other rules.

@(newline) (space)
@(space) (space)
@(tab) (space)
@! ‘!’
@* (space)
@- (nothing)
@. ‘.’
@: (nothing)
@? ‘?’
@@ ‘@’
@{ ‘{’
@} ‘}’
@LaTeX ‘LaTeX’
@TeX ‘TeX’
@arrow U+2192
@bullet U+2022
@comma ‘,’
@copyright U+00A9
@dots U+2026
@enddots ‘...’
@equiv U+2261
@error ‘error-->’
@euro U+20AC
@exclamdown U+00A1
@expansion U+21A6
@geq U+2265
@leq U+2264

Chapter 21: Generating HTML 213

@minus U+2212
@ordf U+00AA
@ordm U+00BA
@point U+22C6
@pounds U+00A3
@print U+22A3
@questiondown U+00BF
@registeredsymbol U+00AE
@result U+21D2
@textdegree U+00B0
@tie (space)

Quotation mark @-commands (@quotedblright{} and the like), are likewise replaced
by their Unicode values. Normal quotation characters (e.g., ASCII ‘ and ’) are not altered.
See Section 11.5 [Inserting Quotation Marks], page 104.

Any @acronym, @abbr, @email, and @image commands are replaced by their first argu-
ment. (For these commands, all subsequent arguments are optional, and ignored here.) See
Section 6.1.14 [@acronym], page 62, and Section 6.1.16 [@email], page 63, and Section 9.2
[Images], page 86.

Accents are handled according to the next section.

Any other command is an error, and the result is unspecified.

21.7.4 HTML Cross-reference 8-bit Character Expansion

Usually, characters other than plain 7-bit ASCII are transformed into the corresponding
Unicode code point(s) in Normalization Form C, which uses precomposed characters where
available. (This is the normalization form recommended by the W3C and other bodies.)
This holds when that code point is 0xffff or less, as it almost always is.

These will then be further transformed by the rules above into the string ‘_hhhh’, where
hhhh is the code point in hex.

For example, combining this rule and the previous section:

@node @b{A} @TeX{} @u{B} @point{}@enddots{}

⇒ A-TeX-B_0306-_22C6_002e_002e_002e

Notice: 1) @enddots expands to three periods which in turn expands to three ‘_002e’’s;
2) @u{B} is a ‘B’ with a breve accent, which does not exist as a pre-accented Unicode
character, therefore expands to ‘B_0306’ (B with combining breve).

When the Unicode code point is above 0xffff, the transformation is ‘__xxxxxx’, that is,
two leading underscores followed by six hex digits. Since Unicode has declared that their
highest code point is 0x10ffff, this is sufficient. (We felt it was better to define this extra
escape than to always use six hex digits, since the first two would nearly always be zeros.)

This method works fine if the node name consists mostly of ASCII characters and contains
only few 8-bit ones. But if the document is written in a language whose script is not based
on the Latin alphabet (for example, Ukrainian), it will create file names consisting almost
entirely of ‘_xxxx’ notations, which is inconvenient and all but unreadable. To handle
such cases, texi2any offers the --transliterate-file-names command line option. This
option enables transliteration of node names into ASCII characters for the purposes of file

Chapter 21: Generating HTML 214

name creation and referencing. The transliteration is based on phonetic principles, which
makes the generated file names more easily understandable.

For the definition of Unicode Normalization Form C, see Unicode report UAX#15,
http://www.unicode.org/reports/tr15/. Many related documents and implementations
are available elsewhere on the web.

21.7.5 HTML Cross-reference Mismatch

As mentioned earlier (see Section 21.7.1 [HTML Xref Link Basics], page 210), the generating
software may need to guess whether a given manual being cross-referenced is available in
split or monolithic form—and, inevitably, it might guess wrong. However, when the referent
manual is generated, it is possible to handle at least some mismatches.

In the case where we assume the referent is split, but it is actually available in mono, the
only recourse would be to generate a manual_html/ subdirectory full of HTML files which
redirect back to the monolithic manual.html. Since this is essentially the same as a split
manual in the first place, it’s not very appealing.

On the other hand, in the case where we assume the referent is mono, but it is actually
available in split, it is possible to use JavaScript to redirect from the putatively monolithic
manual.html to the different manual_html/node.html files. Here’s an example:

function redirect() {

switch (location.hash) {

case "#Node1":

location.replace("manual_html/Node1.html#Node1"); break;

case "#Node2" :

location.replace("manual_html/Node2.html#Node2"); break;

...

default:;

}

}

Then, in the <body> tag of manual.html:

<body onLoad="redirect();">

Once again, this is something the software which generated the referent manual has to
do in advance, it’s not something the software generating the cross-reference in the present
manual can control.

21.7.6 HTML Cross-reference Configuration: htmlxref.cnf

texi2any reads a file named htmlxref.cnf to gather information for cross-references to
other manuals in HTML output. It is looked for in the following directories:

./ (the current directory)

./.texinfo/

(under the current directory)

~/.texinfo/

(where ~ is the current user’s home directory)

http://www.unicode.org/reports/tr15/

Chapter 21: Generating HTML 215

sysconfdir/texinfo/
(where sysconfdir is the system configuration directory specified at compile-time,
e.g., /usr/local/etc)

datadir/texinfo/
(likewise specified at compile time, e.g., /usr/local/share)

All files found are used, with earlier entries overriding later ones. The Texinfo distribution
includes a default file which handles many GNU manuals; it is installed in the last of the
above directories, i.e., datadir/texinfo/htmlxref.cnf.

The HTMLXREF_MODE customization variable can be set to modify how the files are found.
For instance, if set to ‘none’, no external information is used. HTMLXREF_FILE sets the
file name to something else than htmlxref.cnf. see Section 19.4.3 [HTML Customization
Variables], page 174.

The file is line-oriented. Lines consisting only of whitespace are ignored. Comments are
indicated with a ‘#’ at the beginning of a line, optionally preceded by whitespace. Since ‘#’
can occur in URLs (like almost any character), it does not otherwise start a comment.

Each non-blank non-comment line must be either a variable assignment or manual
information.

A variable assignment line looks like this:

varname = varvalue

Whitespace around the ‘=’ is optional and ignored. The varname should consist of
letters; case is significant. The varvalue is an arbitrary string, continuing to the end of the
line. Variables are then referenced with ‘${varname}’; variable references can occur in the
varvalue.

A manual information line looks like this:

manual keyword urlprefix

with manual the short identifier for a manual, keyword being one of: mono, node, section,
chapter, and urlprefix described below. Variable references can occur only in the urlprefix.
For example (used in the canonical htmlxref.cnf):

G = http://www.gnu.org

GS = ${G}/software

hello mono ${GS}/hello/manual/hello.html

hello chapter ${GS}/hello/manual/html_chapter/

hello section ${GS}/hello/manual/html_section/

hello node ${GS}/hello/manual/html_node/

If the keyword is mono, urlprefix gives the host, directory, and file name for manual as
one monolithic file.

If the keyword is node, section, or chapter, urlprefix gives the host and directory for
manual split into nodes, sections, or chapters, respectively.

When available, texi2any will use the “corresponding” value for cross-references between
manuals. That is, when generating monolithic output (--no-split), the mono URL will
be used, when generating output that is split by node, the node URL will be used, etc.
However, if a manual is not available in that form, anything that is available can be used.
Here is the search order for each style:

node ⇒ node, section, chapter, mono

Chapter 21: Generating HTML 216

section ⇒ section, chapter, node, mono

chapter ⇒ chapter, section, node, mono

mono ⇒ mono, chapter, section, node

These section- and chapter-level cross-manual references can succeed only when the target
manual was created using --node-files; this is the default for split output.

If you have additions or corrections to the htmlxref.cnf distributed with Texinfo,
please email bug-texinfo@gnu.org as usual. You can get the latest version from http://

ftpmirror.gnu.org/texinfo/htmlxref.cnf.

mailto:bug-texinfo@gnu.org
http://ftpmirror.gnu.org/texinfo/htmlxref.cnf
http://ftpmirror.gnu.org/texinfo/htmlxref.cnf

217

Appendix A @-Command Details

Here are the details of @-commands: information about their syntax, a list of commands,
and information about where commands can appear.

A.1 @-Command Syntax

Texinfo has the following types of @-command:

1. Brace commands
These commands start with @ followed by a letter or a word, followed by
an argument within braces. For example, the command @dfn indicates the
introductory or defining use of a term; it is used as follows: ‘In Texinfo,

@@-commands are @dfn{mark-up} commands.’

2. Line commands
These commands occupy an entire line. The line starts with @, followed by
the name of the command (a word); for example, @center or @cindex. If no
argument is needed, the word is followed by the end of the line. If there is an
argument, it is separated from the command name by a space. Braces are not
used.

3. Block commands
These commands are written at the start of a line, with general text on following
lines, terminated by a matching @end command on a line of its own. For
example, @example, then the lines of a coding example, then @end example.
Some of these block commands take arguments as line commands do; for example,
@enumerate A opening an environment terminated by @end enumerate. Here
‘A’ is the argument.

4. Symbol insertion commands with no arguments
These commands start with @ followed by a word followed by a left and right-
brace. These commands insert special symbols in the document; they do not
take arguments. Some examples: @dots{} ⇒ ‘...’, @equiv{} ⇒ ‘≡ ’, @TeX{}
⇒ ‘TEX’, and @bullet{} ⇒ ‘•’.

5. Non-alphabetic commands
The names of commands in all of the above categories consist of alphabetic
characters, almost entirely in lower-case. Unlike those, the non-alphabetic
commands consist of an @ followed by a punctuation mark or other character
that is not part of the Latin alphabet. Non-alphabetic commands are almost
always part of text within a paragraph. The non-alphabetic commands include
@@, @{, @}, @., @SPACE, and most of the accent commands.

6. Miscellaneous commands
There are a handful of commands that don’t fit into any of the above categories;
for example, the obsolete command @refill, which is always used at the end
of a paragraph immediately following the final period or other punctuation
character. @refill takes no argument and does not require braces. Likewise,
@tab used in a @multitable block does not take arguments, and is not followed
by braces.

Appendix A: @-Command Details 218

Thus, the alphabetic commands fall into classes that have different argument syntaxes.
You cannot tell to which class a command belongs by the appearance of its name, but you
can tell by the command’s meaning: if the command stands for a glyph, it is in class 4 and
does not require an argument; if it makes sense to use the command among other text as
part of a paragraph, the command is in class 1 and must be followed by an argument in
braces. The non-alphabetic commands, such as @:, are exceptions to the rule; they do not
need braces.

The purpose of having different syntax for commands is to make Texinfo files easier to
read, and also to help the GNU Emacs paragraph and filling commands work properly.

A.2 @-Command List

Here is an alphabetical list of the @-commands in Texinfo. Square brackets, [], indicate
optional arguments; an ellipsis, ‘...’, indicates repeated text.

@whitespace
An @ followed by a space, tab, or newline produces a normal, stretchable,
interword space. See Section 11.3.1 [Multiple Spaces], page 101.

@! Produce an exclamation point that ends a sentence (usually after an end-of-
sentence capital letter). See Section 11.3.3 [Ending a Sentence], page 102.

@"

@' Generate an umlaut or acute accent, respectively, over the next character, as in
ö and ó. See Section 11.4 [Inserting Accents], page 103.

@&

@ampchar{}

Generate an ampersand. See Section 11.1.6 [Inserting an Ampersand], page 99.

@* Force a line break. See Section 12.2 [Line Breaks], page 114.

@,{c} Generate a cedilla accent under c, as in ç. See Section 11.4 [Inserting Accents],
page 103.

@- Insert a discretionary hyphenation point. See Section 12.3 [@- @hyphenation],
page 115.

@. Produce a period that ends a sentence (usually after an end-of-sentence capital
letter). See Section 11.3.3 [Ending a Sentence], page 102.

@/ Produces no output, but allows a line break. See Section 12.2 [Line Breaks],
page 114.

@: Tell printed output processors to refrain from inserting extra whitespace after
an immediately preceding period, question mark, exclamation mark, or colon.
See Section 11.3.2 [Not Ending a Sentence], page 101.

@= Generate a macron (bar) accent over the next character, as in ō. See Section 11.4
[Inserting Accents], page 103.

@? Produce a question mark that ends a sentence (usually after an end-of-sentence
capital letter). See Section 11.3.3 [Ending a Sentence], page 102.

Appendix A: @-Command Details 219

@@

@atchar{}

Insert an at sign, ‘@’. See Section 11.1.1 [Inserting an Atsign], page 98.

@\

@backslashchar{}

Insert a backslash, ‘\’; @backslashchar{} works anywhere, while @\ works
only inside @math. See Section 11.1.4 [Inserting a Backslash], page 99, and
Section 11.7 [Inserting Math], page 106.

@^

@` Generate a circumflex (hat) or grave accent, respectively, over the next character,
as in ô and è. See Section 11.4 [Inserting Accents], page 103.

@{

@lbracechar{}

Insert a left brace, ‘{’. See Section 11.1.2 [Inserting Braces], page 98.

@}

@rbracechar{}

Insert a right brace, ‘}’. See Section 11.1.2 [Inserting Braces], page 98.

@~ Generate a tilde accent over the next character, as in ~N. See Section 11.4
[Inserting Accents], page 103.

@AA{}

@aa{} Generate the uppercase and lowercase Scandinavian A-ring letters, respectively:
Å, å. See Section 11.4 [Inserting Accents], page 103.

@abbr{abbreviation}
Indicate a general abbreviation, such as ‘Comput.’. See Section 6.1.13 [@abbr],
page 61.

@acronym{acronym}

Indicate an acronym in all capital letters, such as ‘NASA’. See Section 6.1.14
[@acronym], page 62.

@AE{}

@ae{} Generate the uppercase and lowercase AE ligatures, respectively: Æ, æ. See
Section 11.4 [Inserting Accents], page 103.

@afivepaper

Change page dimensions for the A5 paper size. See Section E.7 [A4 Paper],
page 281.

@afourlatex

@afourpaper

@afourwide

Change page dimensions for the A4 paper size. See Section E.7 [A4 Paper],
page 281.

@alias new=existing
Make the command ‘@new ’ a synonym for the existing command ‘@existing ’.
See Section 16.4 [@alias], page 150.

Appendix A: @-Command Details 220

@allowcodebreaks true-false
Control breaking at ‘-’ and ‘_’ in printed output. See Section 12.4
[@allowcodebreaks], page 115.

@anchor{name}
Define name as the current location for use as a cross-reference target. See
Section 5.11 [@anchor], page 50.

@appendix title
Begin an appendix. The title appears in the table of contents. See Section 4.4
[@unnumbered @appendix], page 40.

@appendixsec title
@appendixsection title

Begin an appendix section within an appendix. The section title appears in the
table of contents. @appendixsection is a longer spelling of the @appendixsec
command. See Section 4.7 [@unnumberedsec @appendixsec @heading], page 41.

@appendixsubsec title
Begin an appendix subsection. The title appears in the table of contents. See
Section 4.9 [@unnumberedsubsec @appendixsubsec @subheading], page 41.

@appendixsubsubsec title
Begin an appendix subsubsection. The title appears in the table of contents.
See Section 4.10 [@subsubsection], page 42.

@arrow{} Generate a right arrow glyph: ‘→’. Used by default for @click. See Sec-
tion 11.9.8 [Click Sequences], page 112.

@asis Keep the argument as is. Used following @table, @ftable, and @vtable to print
the table’s first column without highlighting (“as is”). See [@asis], page 80.

@author author
Set a manual author in the title page. See Section 2.8.2 [@title @subtitle

@author], page 19. Set a quotation author in @quotation. See Section 7.2
[@quotation], page 67.

@b{text} Set text in a bold font, if possible. See Section 6.2.3 [Fonts], page 64.

@bullet{}

Generate a large round dot, •, or the closest possible thing to one. Often used
with @table. See Section 11.8.5 [@bullet], page 108.

@bsixpaper

Change page dimensions for the B6 paper size. See Section E.7 [A4 Paper],
page 281.

@bye Stop processing a file. The processors do not see anything in the input file
following @bye. See Section 2.12 [Ending a File], page 26.

@c comment
Begin a comment in Texinfo. The rest of the line does not appear in any
output. A synonym for @comment. DEL also starts a comment. See Section 2.2
[Comments], page 10.

Appendix A: @-Command Details 221

@caption Define the full caption for a @float. See Section 9.1.2 [@caption
@shortcaption], page 85.

@cartouche

Highlight an example or quotation by drawing a box with rounded corners
around it, if possible. Pair with @end cartouche. See Section 7.14 [@cartouche],
page 74.

@center line-of-text
Center the line of text following the command. See Section 2.8.3 [@titlefont
@center @sp], page 20.

@centerchap line-of-text
Like @chapter, but centers the chapter title. See Section 4.3 [@chapter], page 39.

@chapheading title
Print an unnumbered chapter-like heading, but omit from the table of contents.
See Section 4.5 [@majorheading @chapheading], page 40.

@chapter title
Begin a numbered chapter. The chapter title appears in the table of contents.
See Section 4.3 [@chapter], page 39.

@cindex entry
Add entry to the index of concepts. See Section 10.4 [Defining the Entries of an
Index], page 93.

@cite{reference}
Highlight the name of a book or other reference that has no companion Info file.
See Section 5.15 [@cite], page 53.

@clear flag
Unset flag, preventing the Texinfo formatting commands from formatting text
between subsequent pairs of @ifset flag and @end ifset commands, and pre-
venting @value{flag} from expanding to the value to which flag is set. See
Section 15.5 [@set @clear @value], page 138.

@click{} Represent a single “click” in a GUI. Used within @clicksequence. See Sec-
tion 11.9.8 [Click Sequences], page 112.

@clicksequence{action @click{} action}
Represent a sequence of clicks in a GUI. See Section 11.9.8 [Click Sequences],
page 112.

@clickstyle @cmd
Execute @cmd for each @click; the default is @arrow. The usual following empty
braces on @cmd are omitted. See Section 11.9.8 [Click Sequences], page 112.

@code{sample-code}
Indicate an expression, a syntactically complete token of a program, or a program
name. See Section 6.1.2 [@code], page 56.

@codequotebacktick on-off
@codequoteundirected on-off

Control output of ` and ' in code examples. See Section 11.2 [Inserting Quote
Characters], page 100.

Appendix A: @-Command Details 222

@comma{} Insert a comma ‘,’ character; only needed when a literal comma would be taken
as an argument separator. See Section 11.1.3 [Inserting a Comma], page 98.

@command{command-name}
Indicate a command name, such as ls. See Section 6.1.10 [@command], page 61.

@comment comment
Begin a comment in Texinfo. The rest of the line does not appear in any output.
A synonym for @c. See Section 2.2 [Comments], page 10.

@contents

Print a complete table of contents or specify that a table of content should
be output, for formats that may output a table of contents. See Section 2.9
[Generating a Table of Contents], page 22.

@copying Specify copyright holders and copying conditions for the document. Pair with
@end copying. See Section 2.7.1 [@copying], page 17.

@copyright{}

Generate the copyright symbol c©. See Section 11.8.2 [@copyright], page 107.

@defblock

Start a block containing definitions. Pair with ‘@end defblock’. See Section 13.7
[Generic Definition Commands], page 127.

@defcodeindex index-name
Define a new index and its indexing command. Print entries in an @code font.
See Section 10.7 [Defining New Indices], page 96.

@defcv category class name
@defcvx category class name

Format a description for a variable associated with a class in object-oriented
programming. Takes three arguments: the category of thing being defined, the
class to which it belongs, and its name. See Chapter 13 [Definition Commands],
page 118.

@deffn category name arguments...
@deffnx category name arguments...

Format a description for a function, interactive command, or similar entity that
may take arguments. @deffn takes as arguments the category of entity being
described, the name of this particular entity, and its arguments, if any. See
Chapter 13 [Definition Commands], page 118.

@defindex index-name
Define a new index and its indexing command. Print entries in a roman font.
See Section 10.7 [Defining New Indices], page 96.

@definfoenclose newcmd, before, after
Create a new command @newcmd for online formats that marks text by
enclosing it in strings that precede and follow the text. See Section 16.6
[@definfoenclose], page 152.

Appendix A: @-Command Details 223

@defivar class instance-variable-name
@defivarx class instance-variable-name

Format a description for an instance variable in object-oriented programming.
The command is equivalent to ‘@defcv {Instance Variable} ...’. See Chap-
ter 13 [Definition Commands], page 118.

@defline category name arguments...
Use within a @defblock environment to give the heading prototype line for a
symbol being defined. This command does not create any index entries. See
Section 13.7 [Generic Definition Commands], page 127.

@defmac macroname arguments...
@defmacx macroname arguments...

Format a description for a macro; equivalent to ‘@deffn Macro ...’. See Chap-
ter 13 [Definition Commands], page 118.

@defmethod class method-name arguments...
@defmethodx class method-name arguments...

Format a description for a method in object-oriented programming; equivalent
to ‘@defop Method ...’. See Chapter 13 [Definition Commands], page 118.

@defop category class name arguments...
@defopx category class name arguments...

Format a description for an operation in object-oriented programming. @defop
takes as arguments the name of the category of operation, the name of the
operation’s class, the name of the operation, and its arguments, if any. See
Chapter 13 [Definition Commands], page 118, and Section 13.6.6 [Abstract
Objects], page 125.

@defopt option-name
@defoptx option-name

Format a description for a user option; equivalent to ‘@defvr {User Option}

...’. See Chapter 13 [Definition Commands], page 118.

@defspec special-form-name arguments...
@defspecx special-form-name arguments...

Format a description for a special form; equivalent to ‘@deffn {Special Form}

...’. See Chapter 13 [Definition Commands], page 118.

@deftp category name-of-type attributes...
@deftpx category name-of-type attributes...

Format a description for a data type; its arguments are the category, the name
of the type (e.g., ‘int’) , and then the names of attributes of objects of that
type. See Chapter 13 [Definition Commands], page 118, and Section 13.6.5
[Data Types], page 124.

@deftypecv category class data-type name
@deftypecvx category class data-type name

Format a description for a typed class variable in object-oriented programming.
See Chapter 13 [Definition Commands], page 118, and Section 13.6.6 [Abstract
Objects], page 125.

Appendix A: @-Command Details 224

@deftypefn category data-type name arguments...
@deftypefnx category data-type name arguments...

Format a description for a function or similar entity that may take arguments
and that is typed. @deftypefn takes as arguments the category of entity being
described, the type, the name of the entity, and its arguments, if any. See
Chapter 13 [Definition Commands], page 118.

@deftypefnnewline on-off
Specifies whether return types for @deftypefn and similar are printed on lines
by themselves; default is off. See Section 13.6.2 [Functions in Typed Languages],
page 121.

@deftypefun data-type function-name arguments...
@deftypefunx data-type function-name arguments...

Format a description for a function in a typed language. The command is equiv-
alent to ‘@deftypefn Function ...’. See Chapter 13 [Definition Commands],
page 118.

@deftypeivar class data-type variable-name
@deftypeivarx class data-type variable-name

Format a description for a typed instance variable in object-oriented program-
ming. See Chapter 13 [Definition Commands], page 118, and Section 13.6.6
[Abstract Objects], page 125.

@deftypeline category data-type name arguments...
Use within a @defblock environment to give the heading prototype line for a
symbol being defined, with data types. This command does not create any index
entries. See Section 13.7 [Generic Definition Commands], page 127.

@deftypemethod class data-type method-name arguments...
@deftypemethodx class data-type method-name arguments...

Format a description for a typed method in object-oriented programming. See
Chapter 13 [Definition Commands], page 118.

@deftypeop category class data-type name arguments...
@deftypeopx category class data-type name arguments...

Format a description for a typed operation in object-oriented programming.
See Chapter 13 [Definition Commands], page 118, and Section 13.6.6 [Abstract
Objects], page 125.

@deftypevar data-type variable-name
@deftypevarx data-type variable-name

Format a description for a variable in a typed language. The command is equiv-
alent to ‘@deftypevr Variable ...’. See Chapter 13 [Definition Commands],
page 118.

@deftypevr category data-type name
@deftypevrx category data-type name

Format a description for something like a variable in a typed language—an
entity that records a value. Takes as arguments the category of entity being
described, the type, and the name of the entity. See Chapter 13 [Definition
Commands], page 118.

Appendix A: @-Command Details 225

@defun function-name arguments...
@defunx function-name arguments...

Format a description for a function; equivalent to ‘@deffn Function ...’. See
Chapter 13 [Definition Commands], page 118.

@defvar variable-name
@defvarx variable-name

Format a description for a variable; equivalent to ‘@defvr Variable ...’. See
Chapter 13 [Definition Commands], page 118.

@defvr category name
@defvrx category name

Format a description for any kind of variable. @defvr takes as arguments the
category of the entity and the name of the entity. See Chapter 13 [Definition
Commands], page 118.

@detailmenu

Mark the (optional) detailed node listing in a master menu. See Section 2.10.1
[Master Menu Parts], page 23.

@dfn{term}

Indicate the introductory or defining use of a term. See Section 6.1.12 [@dfn],
page 61.

@DH{}

@dh{} Generate the uppercase and lowercase Icelandic letter eth, respectively: Ð, ð.
See Section 11.4 [Inserting Accents], page 103.

@dircategory dirpart
Specify a category for the manual. See Section 2.6 [Directory Category], page 16.

@direntry

Begin the Info directory menu entry for this file. Pair with @end direntry. See
Section 20.1.4 [Installing Dir Entries], page 198.

@display Begin a kind of example. Like @example (indent text, do not fill), but do not
select a new font. Pair with @end display. See Section 7.7 [@display], page 70.

@displaymath

Format a block of math in “display” format. See Section 11.7 [Inserting Math],
page 106.

@dmn{dimension}
Format a unit of measure, as in 12 pt. See Section 11.3.5 [@dmn], page 103.

@docbook Enter DocBook completely. Pair with @end docbook. See Section 15.3 [Raw
Formatter Commands], page 136.

@documentdescription

Set the document description text, included in the HTML output. Pair with @end

documentdescription. See Section 21.4 [@documentdescription], page 207.

@documentencoding enc
Declare the input encoding to be enc. See Section 14.2 [@documentencoding],
page 132.

Appendix A: @-Command Details 226

@documentlanguage CC
Declare the document language as the two-character ISO-639 abbreviation CC.
See Section 14.1 [@documentlanguage], page 131.

@dotaccent{c}
Generate a dot accent over the character c, as in ȯ. See Section 11.4 [Inserting
Accents], page 103.

@dotless{i-or-j}
Generate dotless i (‘ı’) and dotless j (‘ȷ’). See Section 11.4 [Inserting Accents],
page 103.

@dots{} Generate an ellipsis, ‘...’. See Section 11.8.4 [@dots], page 107.

@email{address[, displayed-text]}
Indicate an electronic mail address. See Section 6.1.16 [@email], page 63.

@emph{text}
Emphasize text. See Section 6.2 [Emphasizing Text], page 63.

@end environment
Ends environment, as in ‘@end example’. See [@-commands], page 9.

@enddots{}

Generate an end-of-sentence ellipsis, like this: . . . See Section 11.8.4 [@dots],
page 107.

@enumerate [number-or-letter]
Begin a numbered list, using @item for each entry. Optionally, start list with
number-or-letter. Pair with @end enumerate. See Section 8.3 [@enumerate],
page 78.

@env{environment-variable}
Indicate an environment variable name, such as PATH. See Section 6.1.8 [@env],
page 60.

@equiv{} Indicate to the reader the exact equivalence of two forms with a glyph: ‘≡ ’.
See Section 11.9.6 [@equiv], page 111.

@error{} Indicate to the reader with a glyph that the following text is an error message:
‘ error ’. See Section 11.9.5 [@error], page 110.

@errormsg{msg}
Report msg as an error to standard error, and exit unsuccessfully. Texinfo
commands within msg are expanded to plain text. See Chapter 15 [Conditionals],
page 134, and Section 16.7 [External Macro Processors], page 153.

@euro{} Generate the Euro currency sign. See Section 11.8.6 [@euro], page 108.

@evenfooting [left] @| [center] @| [right]
@evenheading [left] @| [center] @| [right]

Specify page footings resp. headings for even-numbered (left-hand) pages. See
Section E.2.3 [How to Make Your Own Headings], page 277.

Appendix A: @-Command Details 227

@everyfooting [left] @| [center] @| [right]
@everyheading [left] @| [center] @| [right]

Specify page footings resp. headings for every page. Not relevant to Info. See
Section E.2.3 [How to Make Your Own Headings], page 277.

@example Begin an example. Indent text, do not fill, and select fixed-width font. Pair with
@end example. @example accepts optional arguments, separated by commas. It
is recommended to set the first argument to the language of the example code.
See Section 7.4 [@example], page 68.

@exampleindent indent
Indent example-like environments by indent number of spaces (perhaps 0). See
Section E.5 [@exampleindent], page 280.

@exclamdown{}

Generate an upside-down exclamation point. See Section 11.4 [Inserting Accents],
page 103.

@exdent line-of-text
Remove any indentation a line might have. See Section 7.9 [@exdent], page 71.

@expansion{}

Indicate the result of a macro expansion to the reader with a special glyph: ‘ 7→’.
See Section 11.9.3 [@expansion], page 109.

@file{filename}
Highlight the name of a file, buffer, node, directory, etc. See Section 6.1.9
[@file], page 60.

@finalout

Prevent TEX from printing large black warning rectangles beside over-wide lines.
See Section 18.6 [Overfull hboxes], page 162.

@findex entry
Add entry to the index of functions. See Section 10.4 [Defining the Entries of
an Index], page 93.

@firstparagraphindent word
Control indentation of the first paragraph after section headers according to word,
one of ‘none’ or ‘insert’. See Section E.4 [@firstparagraphindent], page 280.

@float Environment to define floating material. Pair with @end float. See Section 9.1
[Floats], page 84.

@flushleft

@flushright

Do not fill text; left (right) justify every line while leaving the right (left) end
ragged. Leave font as is. Pair with @end flushleft (@end flushright). See
Section 7.10 [@flushleft @flushright], page 71.

@fonttextsize 10-11
Change the size of the main body font in the printed output. See Section 6.2.3
[Fonts], page 64.

Appendix A: @-Command Details 228

@footnote{text-of-footnote}
Enter a footnote, for a reference that documents or elucidates the primary text.
Footnote text is printed at the bottom of the page in printed output. In other
formats, footnote text can be output in the same node, in a separate node, or
simply be marked as being footnote text. See Section 9.3 [Footnotes], page 88.

@footnotestyle style
Specify a footnote style, either ‘end’ for the end node style or ‘separate’ for
the separate style. In the separate style, footnotes are put in a separate node or
file. See Section 9.3.2 [Footnote Styles], page 89.

@format Begin a kind of example. Like @display, but do not indent. Pair with @end

format. See Section 7.4 [@example], page 68.

@frenchspacing on-off
Control spacing after punctuation. See Section 11.3.4 [@frenchspacing],
page 102.

@ftable formatting-command
Begin a two-column table, using @item for each entry. Automatically enter each
of the items in the first column into the index of functions. Pair with @end

ftable. The same as @table, except for indexing. See Section 8.4.2 [@ftable
@vtable], page 81.

@geq{} Generate a greater-than-or-equal sign, ‘≥’. See Section 11.8.10 [@geq @leq],
page 108.

@group Disallow page breaks within following text. Pair with @end group. Ignored in
Info. See Section 12.9 [@group], page 116.

@guillemetleft{}

@guillemetright{}

@guillemotleft{}

@guillemotright{}

@guilsinglleft{}

@guilsinglright{}

Double and single angle quotation marks: � � � �. @guillemotleft and
@guillemotright are synonyms for @guillemetleft and @guillemetright.
See Section 11.5 [Inserting Quotation Marks], page 104.

@H{c} Generate the long Hungarian umlaut accent over c, as in ő.

@hashchar{}

Insert a hash ‘#’ character; only needed when a literal hash would introduce
#line directive. See Section 11.1.5 [Inserting a Hashsign], page 99, and Sec-
tion 16.7 [External Macro Processors], page 153.

@heading title
Print an unnumbered section-like heading, but omit from the table of contents.
See Section 4.7 [@unnumberedsec @appendixsec @heading], page 41.

@headings on-off-single-double
Turn page headings on or off, and/or specify single-sided or double-sided page
headings for printing. See Section E.2.1 [@headings], page 276.

Appendix A: @-Command Details 229

@headitem

Begin a heading row in a multitable. See Section 8.5.2 [Multitable Rows],
page 82.

@headitemfont{text}
Set text in the font used for multitable heading rows; mostly useful in multitable
templates. See Section 8.5.2 [Multitable Rows], page 82.

@html Enter HTML completely. Pair with @end html. See Section 15.3 [Raw Formatter
Commands], page 136.

@hyphenation{hy-phen-a-ted words}
Explicitly define hyphenation points. See Section 12.3 [@- @hyphenation],
page 115.

@i{text} Set text in an italic font, when possible. See Section 6.2.3 [Fonts], page 64.

@ifclear txivar
If the Texinfo variable txivar is not set, format the following text. Pair with
@end ifclear. See Section 15.5 [@set @clear @value], page 138.

@ifcommanddefined txicmd
@ifcommandnotdefined txicmd

If the Texinfo code ‘@txicmd’ is (not) defined, format the follow text. Pair with
the corresponding @end ifcommand.... See Section 15.6 [Testing for Texinfo
Commands], page 141.

@ifdocbook

@ifhtml

@ifinfo

@iflatex

@ifplaintext

@ifxml Begin text that will appear only in the given output format. @ifinfo output
appears in both Info and (for historical compatibility) plain text output. Pair
with @end ifdocbook resp. @end ifhtml. . . See Chapter 15 [Conditionals],
page 134.

@ifnotdocbook

@ifnothtml

@ifnotlatex

@ifnotplaintext

@ifnottex

@ifnotxml

Begin text to be ignored in one output format but not the others. @ifnothtml
text is omitted from HTML output, etc. Pair with the corresponding @end

ifnotformat. See Chapter 15 [Conditionals], page 134.

@ifnotinfo

Begin text to appear in output other than Info and (for historical compatibility)
plain text. Pair with @end ifnotinfo. See Chapter 15 [Conditionals], page 134.

Appendix A: @-Command Details 230

@ifset txivar
If the Texinfo variable txivar is set, format the following text. Pair with @end

ifset. See Section 15.5 [@set @clear @value], page 138.

@iftex Begin text to appear only in the TEX output. Pair with @end iftex. See
Chapter 15 [Conditionals], page 134.

@ignore Begin text that will not appear in any output. Pair with @end ignore. See
Section 2.2 [Comments and Ignored Text], page 10.

@image{filename, [width], [height], [alt], [ext]}
Include graphics image in external filename scaled to the given width and/or
height, using alt text and looking for ‘filename.ext’ in HTML. See Section 9.2
[Images], page 86.

@include filename
Read the contents of Texinfo source file filename. See Chapter 17 [Include Files],
page 155.

@indent Insert paragraph indentation. See Section 7.13 [@indent], page 73.

@indentedblock

Indent a block of arbitrary text on the left. Pair with @end indentedblock.
See Section 7.3 [@indentedblock], page 68.

@indicateurl{indicateurl}
Indicate text that is a uniform resource locator for the World Wide Web. See
Section 6.1.15 [@indicateurl], page 63.

@inforef{node-name, [entry-name], info-file-name}
Make a cross-reference to an Info file for which there is no printed manual. See
Section 5.13 [@inforef], page 51.

@inlinefmt{fmt, text}
Insert text only if the output format is fmt. See Section 15.4 [Inline Conditionals],
page 137.

@inlinefmtifelse{fmt, text, else-text}
Insert text if the output format is fmt, else else-text.

@inlineifclear{var, text}
@inlineifset{var, text}

Insert text only if the Texinfo variable var is (not) set.

@inlineraw{fmt, raw-text}
Insert text as in a raw conditional, only if the output format is fmt.

\input macro-definitions-file
Use the specified macro definitions file. This command is used only in the first
line of a Texinfo file to cause TEX to make use of the texinfo macro definitions
file. The \ in \input is used instead of an @ because TEX does not recognize @
until after it has read the definitions file. See Section 2.5 [Texinfo File Header],
page 12.

Appendix A: @-Command Details 231

@insertcopying

Insert the text previously defined with the @copying environment. See Sec-
tion 2.7.2 [@insertcopying], page 18.

@item Indicate the beginning of a marked paragraph for @itemize and @enumerate;
indicate the beginning of the text of a first column entry for @table, @ftable,
and @vtable. See Chapter 8 [Lists and Tables], page 76.

@itemize mark-generating-character-or-command
Begin an unordered list: indented paragraphs with a mark, such as @bullet,
inside the left margin at the beginning of each item. Pair with @end itemize.
See Section 8.2 [@itemize], page 77.

@itemx Like @item in @table, @ftable, and @vtable, but do not generate extra vertical
space above the item text. Thus, when several items have the same description,
use @item for the first and @itemx for the others. See Section 8.4.3 [@itemx],
page 81.

@kbd{keyboard-characters}
Indicate characters of input to be typed by users. See Section 6.1.3 [@kbd],
page 57.

@kbdinputstyle style
Specify when @kbd should use a font distinct from @code according to style:
code, distinct, example. See Section 6.1.3 [@kbd], page 57.

@key{key-name}
Indicate the name of a key on a keyboard. See Section 6.1.4 [@key], page 58.

@kindex entry
Add entry to the index of keys. See Section 10.4 [Defining the Entries of an
Index], page 93.

@L{}

@l{} Generate the uppercase and lowercase Polish suppressed-L letters, respectively:
�, ª.

@LaTeX{} Generate the LATEX logo. See Section 11.8.1 [@TeX @LaTeX], page 107.

@latex Enter LATEX completely. Pair with @end latex. See Section 15.3 [Raw Formatter
Commands], page 136.

@leq{} Generate a less-than-or-equal sign, ‘≤’. See Section 11.8.10 [@geq @leq],
page 108.

@linemacro macroname {params}
Define a new macro which takes rest of the line as an argument, and expands to
a whole number of complete lines. See Section 16.5 [Line Macros], page 151.

@link{nodename, label, manual-name}
Create a plain link with no visible markup or page reference. See Section 5.12
[@link], page 51.

@lisp Begin an example of Lisp code. Indent text, do not fill, and select fixed-width
font. Pair with @end lisp. See Section 7.6 [@lisp], page 70.

Appendix A: @-Command Details 232

@listoffloats

Produce a table-of-contents-like listing of @floats. See Section 9.1.3
[@listoffloats], page 86.

@lowersections

Change subsequent chapters to sections, sections to subsections, and so on. See
Section 4.12 [@raisesections and @lowersections], page 43.

@macro macroname {params}
Define a new Texinfo command @macroname{params}. Pair with @end macro.
See Section 16.1 [Defining Macros], page 144.

@majorheading title
Print an unnumbered chapter-like heading, but omit from the table of
contents. This generates more vertical whitespace before the heading than
the @chapheading command. See Section 4.5 [@majorheading @chapheading],
page 40.

@math{mathematical-expression}
Format a mathematical expression. See Section 11.7 [Inserting Math], page 106.

@menu Mark the beginning of a menu of nodes. No effect in a printed manual. Pair
with @end menu. See Section 3.9 [Menus], page 34.

@microtype on-off
Turn microtype on or off. See Section E.9 [Microtypography], page 282.

@minus{} Generate a minus sign, ‘−’. See Section 11.8.9 [@minus], page 108.

@multitable column-width-spec
Begin a multi-column table. Begin each row with @item or @headitem, and
separate columns with @tab. Pair with @end multitable. See Section 8.5.1
[Multitable Column Widths], page 82.

@need n Start a new page in a printed manual if fewer than n mils (thousandths of an
inch) remain on the current page. See Section 12.10 [@need], page 117.

@node name, [next], [previous], [up]
Begin a new node. Only the first argument is mandatory. See Section 3.1
[Writing a Node], page 27.

@nodedescription node-description
Provide a short elaboration of the purpose of a node. See Section 3.8 [Node
Descriptions], page 33.

@nodedescriptionblock

Used to start a longer node description. Pair with ‘@end
nodedescriptionblock’. See Section 3.8 [Node Descriptions], page 33.

@noindent

Prevent text from being indented as if it were a new paragraph. See Section 7.12
[@noindent], page 73.

Appendix A: @-Command Details 233

@novalidate

Suppress validation of node references and omit creation of auxiliary files with
TEX. Use before any sectioning or cross-reference commands. See [Pointer
Validation], page 168.

@O{}

@o{} Generate the uppercase and lowercase O-with-slash letters, respectively: Ø, ø.

@oddfooting [left] @| [center] @| [right]
@oddheading [left] @| [center] @| [right]

Specify page footings resp. headings for odd-numbered (right-hand) pages. See
Section E.2.3 [How to Make Your Own Headings], page 277.

@OE{}

@oe{} Generate the uppercase and lowercase OE ligatures, respectively: Œ, œ. See
Section 11.4 [Inserting Accents], page 103.

@ogonek{c}
Generate an ogonek diacritic under the next character, as in ¡. See Section 11.4
[Inserting Accents], page 103.

@option{option-name}
Indicate a command-line option, such as -l or --help. See Section 6.1.11
[@option], page 61.

@ordf{}

@ordm{} Generate the feminine and masculine Spanish ordinals, respectively: a, o. See
Section 11.4 [Inserting Accents], page 103.

@page Start a new page in a printed manual. See Section 12.8 [@page], page 116.

@pagesizes [width][, height]
Change page dimensions. See [pagesizes], page 281.

@paragraphindent indent
Indent paragraphs by indent number of spaces (perhaps 0); preserve source file
indentation if indent is asis. See Section E.3 [@paragraphindent], page 280.

@part title
Begin a group of chapters or appendixes; included in the tables of contents. See
Section 4.11 [@part], page 42.

@pindex entry
Add entry to the index of programs. See Section 10.4 [Defining the Entries of
an Index], page 93.

@point{} Indicate the position of point in a buffer to the reader with a glyph: ‘?’. See
Section 11.9.7 [@point], page 111.

@pounds{}

Generate the pounds sterling currency sign, ‘¿’. See Section 11.8.7 [@pounds],
page 108.

@print{} Indicate printed output to the reader with a glyph: ‘ a ’. See Section 11.9.4
[@print], page 110.

Appendix A: @-Command Details 234

@printindex index-name
Generate the index for index-name. See Section 10.5 [Printing Indices & Menus],
page 94.

@pxref{node, [entry], [node-title], [info-file], [printed-manual]}
Make a reference to be used within parentheses. Starts with a lowercase ‘see’
in a printed manual. The first argument is mandatory, except for references
to whole manuals. To refer to another manual as a whole, the printed-manual
and/or the info-file are the only required arguments. See Section 5.10 [@pxref],
page 50.

@questiondown{}

Generate an upside-down question mark. See Section 11.4 [Inserting Accents],
page 103.

@quotation

Narrow the margins to indicate text that is quoted from another work. Takes
optional argument specifying prefix text. Pair with @end quotation. See
Section 7.2 [@quotation], page 67.

@quotedblleft{}

@quotedblright{}

@quoteleft{}

@quoteright{}

@quotedblbase{}

@quotesinglbase{}

Produce various quotation marks: “ ” ‘ ’ �
. See Section 11.5 [Inserting
Quotation Marks], page 104.

@r{text} Set text in the regular roman font, if possible. See Section 6.2.3 [Fonts], page 64.

@raggedright

Fill text; left justify every line while leaving the right end ragged. Leave font as
is. Pair with @end raggedright. See Section 7.11 [@raggedright], page 72.

@raisesections

Change subsequent sections to chapters, subsections to sections, and so on. See
Section 4.12 [Raise/lower sections], page 43.

@ref{node, [entry], [node-title], [info-file], [printed-manual]}
Make a plain reference that does not start with any special text. Follow command
with a punctuation mark. The first argument is mandatory, except for references
to whole manuals. To refer to another manual as a whole, the printed-manual
and/or the info-file are the only required arguments. See Section 5.9 [@ref],
page 49.

@registeredsymbol{}

Generate the legal symbol R©. See Section 11.8.3 [@registeredsymbol],
page 107.

@result{}

Indicate the result of an expression to the reader with a special glyph: ‘⇒’. See
Section 11.9.2 [@result], page 109.

Appendix A: @-Command Details 235

@ringaccent{c}
Generate a ring accent over the next character, as in o̊. See Section 11.4
[Inserting Accents], page 103.

@samp{text}
Indicate a literal example of a sequence of characters, in general. See Section 6.1.5
[@samp], page 58.

@sansserif{text}
Set text in a sans serif font if possible. See Section 6.2.3 [Fonts], page 64.

@sc{text} Set text in a small caps font if possible, and uppercase in Info. See Section 6.2.2
[Smallcaps], page 64.

@section title
Begin a section within a chapter. The section title appears in the table of
contents. Within @chapter and @appendix, the section title is numbered;
within @unnumbered, the section is unnumbered. See Section 4.6 [@section],
page 40.

@seealso{index-text}
Use in an index entry to refer the reader to another relevant index entry. See
Section 10.3 [Advanced Indexing], page 93.

@seeentry{index-text}
Use in an index entry to redirect the reader to another index entry. See
Section 10.3 [Advanced Indexing], page 93.

@set txivar [string]
Define the Texinfo variable txivar, optionally to the value string. See Section 15.5
[@set @clear @value], page 138.

@setchapternewpage on-off-odd
Specify whether chapters start on new pages, and if so, whether on odd-numbered
(right-hand) new pages. See Section E.1 [@setchapternewpage], page 275.

@setfilename info-file-name
Provide a name to be used for the output files. This command is ignored for
TEX formatting. See Section 2.5.2 [@setfilename], page 13.

@settitle title
Specify the title for page headers in a printed manual, and the default document
title for HTML. See Section 2.5.3 [@settitle], page 14.

@shortcaption

Define the short caption for a @float. See Section 9.1.2 [@caption
@shortcaption], page 85.

@shortcontents

Print a short table of contents, with chapter-level entries only, or specify that a
short table of contents should be output. For formats that may output a short
table of contents. See Section 2.9 [Generating a Table of Contents], page 22.

@shorttitlepage title
Generate a minimal title page. See Section 2.8.1 [@titlepage], page 18.

Appendix A: @-Command Details 236

@slanted{text}
Set text in a slanted font if possible. See Section 6.2.3 [Fonts], page 64.

@smallbook

In printed output, use a 7 by 9.25 inch format rather than the regular 8.5 by 11
inch format. See Section E.6 [@smallbook], page 281.

@smalldisplay

Begin a kind of example. Like @display, but use a smaller font size where
possible. Pair with @end smalldisplay. See Section 7.15 [small], page 75.

@smallexample

Begin an example. Like @example, but use a smaller font size where possible.
Pair with @end smallexample. See Section 7.15 [small], page 75.

@smallformat

Begin a kind of example. Like @format, but use a smaller font size where
possible. Pair with @end smallformat. See Section 7.15 [small], page 75.

@smallindentedblock

Like @indentedblock, but use a smaller font size where possible. Pair with
@end smallindentedblock. See Section 7.15 [small], page 75.

@smalllisp

Begin an example of Lisp code. Same as @smallexample. Pair with @end

smalllisp. See Section 7.15 [small], page 75.

@smallquotation

Like @quotation, but use a smaller font size where possible. Pair with @end

smallquotation. See Section 7.15 [small], page 75.

@sortas {key}
Used in the arguments to index commands to give a string by which the index
entry should be sorted. See Section 10.2 [Indexing Commands], page 92.

@sp n Skip n blank lines. See Section 12.7 [@sp], page 116.

@ss{} Generate the German sharp-S es-zet letter, ß. See Section 11.4 [Inserting
Accents], page 103.

@strong {text}
Emphasize text more strongly than @emph. See [Emphasizing Text], page 63.

@sub {text}
Set text as a subscript. See Section 11.6 [Inserting Subscripts and Superscripts],
page 106.

@subentry

Use in an index entry to separate parts of a multi-level entry. See Section 10.3
[Advanced Indexing], page 93.

@subheading title
Print an unnumbered subsection-like heading, but omit from the table of contents
of a printed manual. See Section 4.9 [@unnumberedsubsec @appendixsubsec

@subheading], page 41.

Appendix A: @-Command Details 237

@subsection title
Begin a subsection within a section. The subsection title appears in the table
of contents. Same context-dependent numbering as @section. See Section 4.8
[@subsection], page 41.

@subsubheading title
Print an unnumbered subsubsection-like heading, but omit from the table of
contents of a printed manual. See Section 4.10 [@subsubsection], page 42.

@subsubsection title
Begin a subsubsection within a subsection. The subsubsection title appears in
the table of contents. Same context-dependent numbering as @section. See
Section 4.10 [@subsubsection], page 42.

@subtitle title
Set a subtitle for the title page. See Section 2.8.2 [@title @subtitle @author],
page 19.

@summarycontents

Print or specify a short table of contents. Synonym for @shortcontents. See
Section 2.9 [Generating a Table of Contents], page 22.

@sup {text}
Set text as a superscript. See Section 11.6 [Inserting Subscripts and Superscripts],
page 106.

@syncodeindex from-index to-index
Merge the index named in the first argument into the index named in the
second argument, formatting the entries from the first index with @code. See
Section 10.6 [Combining Indices], page 95.

@synindex from-index to-index
Merge the index named in the first argument into the index named in the second
argument. Do not change the font of from-index entries. See Section 10.6
[Combining Indices], page 95.

@t{text} Set text in a fixed-width, typewriter-like font, if possible. See Section 6.2.3
[Fonts], page 64.

@tab Separate columns in a row of a multitable. See Section 8.5.2 [Multitable Rows],
page 82.

@table formatting-command
Begin a two-column table (description list), using @item for each entry. Write
each first column entry on the same line as @item. First column entries are
printed in the font resulting from formatting-command. Pair with @end table.
See Section 8.4 [Making a Two-column Table], page 79. Also see Section 8.4.2
[@ftable @vtable], page 81, and Section 8.4.3 [@itemx], page 81.

@TeX{} Generate the TEX logo. See Section 11.8.1 [@TeX @LaTeX], page 107.

@tex Enter TEX completely. Pair with @end tex. See Section 15.3 [Raw Formatter
Commands], page 136.

Appendix A: @-Command Details 238

@textdegree{}

Generate the degree symbol. See Section 11.8.8 [@textdegree], page 108.

@thischapter

@thischaptername

@thischapternum

@thissection

@thissectionname

@thissectionnum

@thisfile

@thispage

@thistitle

Only allowed in a heading or footing. Stands for, respectively, the number and
name of the current chapter (in the format ‘Chapter 1: Title’), the current
chapter name only, the current chapter number only, the number and name of
the current section, the current section name only, the current section number
only, the file name, the current page number, and the title of the document. See
Section E.2.3 [How to Make Your Own Headings], page 277.

@TH{}

@th{} Generate the uppercase and lowercase Icelandic letter thorn, respectively: Þ, þ.
See Section 11.4 [Inserting Accents], page 103.

@tie{} Generate a normal interword space at which a line break is not allowed. See
Section 12.6 [@tie], page 116.

@tieaccent{cc}
Generate a tie-after accent over the next two characters cc, as in ‘�oo’. See
Section 11.4 [Inserting Accents], page 103.

@tindex entry
Add entry to the index of data types. See Section 10.4 [Defining the Entries of
an Index], page 93.

@title title
Set the title for the title page. See Section 2.8.2 [@title @subtitle @author],
page 19.

@titlefont{text}
Print text in a larger than normal font, if possible. See Section 2.8.3 [@titlefont
@center @sp], page 20.

@titlepage

Begin the title page. Write the command on a line of its own, paired with @end

titlepage. The title page is not output, in the default case, in online formats.
See Section 2.8.1 [@titlepage], page 18.

@today{} Insert the current date, in ‘1 Jan 1900’ style. See Section E.2.3 [How to Make
Your Own Headings], page 277.

@top title Mark the topmost @node in the file, which must be defined on the line immedi-
ately preceding the @top command. The title is formatted as a chapter-level
heading. In TEX the @top command is merely a synonym for @unnumbered.

Appendix A: @-Command Details 239

@U{hex} Output a representation of Unicode character U+hex. See Section 11.10 [Inserting
Unicode], page 112.

@u{c}
@ubaraccent{c}
@udotaccent{c}

Generate a breve, underbar, or underdot accent, respectively, over or under the
character c, as in ŏ, o

¯
, o. . See Section 11.4 [Inserting Accents], page 103.

@unmacro macroname
Undefine the macro @macroname if it has been defined. See Section 16.1 [Defining
Macros], page 144.

@unnumbered title
Begin a chapter that appears without chapter numbers of any kind. The title
appears in the table of contents. See Section 4.4 [@unnumbered @appendix],
page 40.

@unnumberedsec title
Begin a section that appears without section numbers of any kind. The title ap-
pears in the table of contents. See Section 4.7 [@unnumberedsec @appendixsec

@heading], page 41.

@unnumberedsubsec title
Begin an unnumbered subsection. The title appears in the table of contents. See
Section 4.9 [@unnumberedsubsec @appendixsubsec @subheading], page 41.

@unnumberedsubsubsec title
Begin an unnumbered subsubsection. The title appears in the table of contents.
See Section 4.10 [@subsubsection], page 42.

@uref{url[, displayed-text][, replacement}
@url{url[, displayed-text][, replacement}

Define a cross-reference to an external uniform resource locator, e.g., for the
World Wide Web. See Section 5.14 [@url], page 51.

@urefbreakstyle style
Specify how @uref/@url should break at special characters: after, before,
none. See Section 5.14 [@url], page 51.

@v{c} Generate check accent over the character c, as in ǒ. See Section 11.4 [Inserting
Accents], page 103.

@value{txivar}
Insert the value, if any, of the Texinfo variable txivar, previously defined by
@set. See Section 15.5 [@set @clear @value], page 138.

@var{metasyntactic-variable}
Highlight a metasyntactic variable, which is something that stands for another
piece of text. See Section 6.1.7 [@var], page 59.

@verb{delim literal delim}

Output literal, delimited by the single character delim, exactly as is (in the
fixed-width font), including any whitespace or Texinfo special characters. See
Section 6.1.6 [@verb], page 59.

Appendix A: @-Command Details 240

@verbatim

Output the text of the environment exactly as is (in the fixed-width font). Pair
with @end verbatim. See Section 7.5 [@verbatim], page 69.

@verbatiminclude filename
Output the contents of filename exactly as is (in the fixed-width font). See
Section 17.3 [@verbatiminclude], page 156.

@vindex entry
Add entry to the index of variables. See Section 10.4 [Defining the Entries of an
Index], page 93.

@vskip amount
In a printed manual, insert whitespace so as to push text on the remainder of
the page towards the bottom of the page. Used in formatting the copyright
page with the argument ‘0pt plus 1filll’. (Note spelling of ‘filll’.) See
Section 2.8.4 [Copyright], page 21.

@vtable formatting-command
Begin a two-column table, using @item for each entry. Automatically enter each
of the items in the first column into the index of variables. Pair with @end

vtable. The same as @table, except for indexing. See Section 8.4.2 [@ftable
@vtable], page 81.

@w{text} Disallow line breaks within text. See Section 12.5 [@w], page 115.

@xml Enter XML completely. Pair with @end xml. See Section 15.3 [Raw Formatter
Commands], page 136.

@xref{node, [entry], [node-title], [info-file], [printed-manual]}
Make a reference that starts with ‘See’ in a printed manual. Follow command
with a punctuation mark. The first argument is mandatory, except for references
to whole manuals. To refer to another manual as a whole, the printed-manual
and/or the info-file are the only required arguments. See Section 5.8 [@xref],
page 49.

@xrefautomaticsectiontitle on-off
By default, use the section title instead of the node name in cross references,
including in node headers in HTML. See Section 5.5 [Three Arguments], page 46.

A.3 @-Command Contexts

Here we describe approximately which @-commands can be used in which contexts. It is
not exhaustive or meant to be a complete reference. Discrepancies between the information
here and the Texinfo processors implementations are most likely to be resolved in favor of
the implementations.

By general text below, we mean anything except sectioning and other such outer-level
document commands, such as @section, @node, and @setfilename.

@c, @comment and @if ... @end if conditional commands may appear anywhere (except
the conditionals must still be on lines by themselves). @caption and @shortcaption may
only appear in @float but may contain general text. @footnote content likewise.

Appendix A: @-Command Details 241

@-commands with braces marking text (such as @strong, @sc, @asis) may contain
raw formatter commands such as @html but no other block commands (other commands
terminated by @end) and may not be split across paragraphs, but may otherwise contain
general text.

In addition to the block command restriction, on @center, @exdent and @item in @table

lines, @-commands that makes only sense in a paragraph are not accepted, such as @indent.

In addition to the above, sectioning commands cannot contain @anchor, @footnote or
@verb.

In addition to the above, remaining commands (@node, @anchor, @printindex, @ref,
@math, @cindex, @url, @image, and so on) cannot contain cross-reference commands (@ref,
@xref, @pxref and @inforef).

For precise and complete information, we suggest looking into the test suite in the sources,
which exhaustively tries combinations.

A.4 Obsolete @-Commands

Here are Texinfo @-commands which are obsolete or have been removed completely. This
section is for historical purposes.

@refill This command used to refill and indent the paragraph after all the other
processing has been done. It is no longer needed, since all formatters now
automatically refill as needed, but you may still see it in the source to some
manuals, as it does no harm.

@setcontentsaftertitlepage

In the past, the contents commands were sometimes placed at the end of the file,
after any indices and just before the @bye, but we no longer recommend this.
This command could be used by a user printing a manual, to force the contents
to be printed after the title page (after the ‘@end titlepage’ line) even if the
@contents command was at the end of the manual.

@setshortcontentsaftertitlepage

This placed the short table of contents after the ‘@end titlepage’ command
even if the @shortcontents command was at the end.

242

Appendix B Tips and Hints

Here are some tips for writing Texinfo documentation:

• Write in the present tense, not in the past or the future.

• Write actively! For example, write “We recommend that . . .” rather than “It is
recommended that . . . ”.

• Use 70 or 72 as your fill column. Longer lines are hard to read.

• Include a copyright notice and copying permissions.

• Design your manual so that it can be read sequentially, as far as possible. People tire of
flipping back and forth to find information that should be presented to them as they
need it.

Index, Index, Index!

Write many index entries, in different ways. Readers like indices; they are helpful and
convenient.

Although it is easiest to write index entries as you write the body of the text, some
people prefer to write entries afterwards. In either case, write an entry before the paragraph
to which it applies. This way, an index entry points to the first page of a paragraph that is
split across pages.

Here are more index-related hints we have found valuable:

• Write each index entry differently, so each entry refers to a different place in the
document.

• Write index entries only where a topic is discussed significantly. For example, it is not
useful to index “debugging information” in a chapter on reporting bugs. Someone who
wants to know about debugging information will certainly not find it in that chapter.

• Consistently capitalize the first word of every concept index entry, or else consistently
use lowercase. Terse entries often call for lowercase; longer entries for capitalization.
Whichever case convention you use, please use one or the other consistently! Mixing
the two styles looks bad.

• Always capitalize or use uppercase for those words in an index for which this is proper,
such as names of countries or acronyms. Always use the appropriate case for case-
sensitive names, such as those in C or Lisp.

• Write the indexing commands that refer to a whole section immediately after the section
command, and write the indexing commands that refer to a paragraph before that
paragraph.

In the example that follows, a blank line comes after the index entry for “Leaping”:

@section The Dog and the Fox

@cindex Jumping, in general

@cindex Leaping

@cindex Dog, lazy, jumped over

@cindex Lazy dog jumped over

@cindex Fox, jumps over dog

@cindex Quick fox jumps over dog

The quick brown fox jumps over the lazy dog.

Appendix B: Tips and Hints 243

(Note that the example shows entries for the same concept that are written in different
ways—‘Lazy dog’, and ‘Dog, lazy’—so readers can look up the concept in different
ways.)

Blank Lines

• Insert a blank line between a sectioning command and the first following sentence or
paragraph, or between the indexing commands associated with the sectioning command
and the first following sentence or paragraph, as shown in the tip on indexing. It makes
the source easier to read.

• Always insert a blank line before a @table command and after an @end table command;
but never insert a blank line after an @table command.

For example,

Types of fox:

@table @samp

@item Quick

Jump over lazy dogs.

@item Brown

Also jump over lazy dogs.

@end table

@noindent

On the other hand, ...

Insert blank lines before and after @itemize . . . @end itemize and @enumerate . . .
@end enumerate in the same way.

Complete Phrases

Complete phrases are easier to read than . . .

• Write entries in an itemized list as complete sentences; or at least, as complete phrases.
Incomplete expressions . . . awkward . . . like this.

• Write the prefatory sentence or phrase for a multi-item list or table as a complete
expression. Do not write “You can set:”; instead, write “You can set these variables:”.
The former expression sounds cut off.

Editions, Dates and Versions

Include edition numbers, version numbers, and dates in the @copying text (for people reading
the Texinfo file, and for the legal copyright in the output files). Then use @insertcopying in
the @titlepage section for people reading the printed output (see [Short Sample], page 11).

It is easiest to handle such version information using @set and @value. See Section 15.5.4
[@value Example], page 140, and Section C.1 [GNU Sample Texts], page 247.

Definition Commands

Definition commands are @deffn, @defun, @defmac, and the like, and enable you to write
descriptions in a uniform format.

Appendix B: Tips and Hints 244

• Write just one definition command for each entity you define with a definition command.
The automatic indexing feature creates an index entry that leads the reader to the
definition.

• Use @table . . . @end table in an appendix that contains a summary of functions, not
@deffn or other definition commands.

Capitalization

• Capitalize “Texinfo”; it is a name. Do not write the ‘x’ or ‘i’ in uppercase.

• Capitalize “Info”; it is a name.

• Write TEX using the @TeX{} command. Note the uppercase ‘T’ and ‘X’. This command
causes the formatters to typeset the name according to the wishes of Donald Knuth,
who wrote TEX. (Likewise @LaTeX{} for LATEX.)

Spaces

Do not use spaces to format a Texinfo file, except inside of @example . . . @end example and
other literal environments and commands.

For example, TEX fills the following:

@kbd{C-x v}

@kbd{M-x vc-next-action}

Perform the next logical operation

on the version-controlled file

corresponding to the current buffer.

so it looks like this:

C-x v M-x vc-next-action Perform the next logical operation on the version-
controlled file corresponding to the current buffer.

In this case, the text should be formatted with @table, @item, and @itemx, to create a
table.

@code, @samp, @var, and ‘---’

• Use @code around Lisp symbols, including command names. For example,

The main function is @code{vc-next-action}, ...

• Avoid putting letters such as ‘s’ immediately after an ‘@code’. Such letters look bad.

• Use @var around meta-variables. Do not write angle brackets around them.

• Use three hyphens in a row, ‘---’, to indicate a long dash. The Info formatter reduces
three hyphens to two; a long dash is typeset in other output formats.

Periods Outside of Quotes

Place periods and other punctuation marks outside of quotations, unless the punctuation is
part of the quotation. This practice goes against some publishing conventions in the United
States, but enables the reader to distinguish between the contents of the quotation and the
whole passage.

For example, you should write the following sentence with the period outside the end
quotation marks:

Evidently, ‘au’ is an abbreviation for ``author''.

Appendix B: Tips and Hints 245

since ‘au’ does not serve as an abbreviation for ‘author.’ (with a period following the word).

Introducing New Terms

• Introduce new terms so that a reader who does not know them can understand them
from context; or write a definition for the term.

For example, in the following, the terms “check in”, “register” and “delta” are all
appearing for the first time; the example sentence should be rewritten so they are
understandable.

The major function assists you in checking in a file to your version control
system and registering successive sets of changes to it as deltas.

• Use the @dfn command around a word being introduced, to indicate that the reader
should not expect to know the meaning already, and should expect to learn the meaning
from this passage.

Program Invocation Nodes

You can invoke programs such as Emacs, GCC, and gawk from a shell. The documentation
for each program should contain a section that describes this. Unfortunately, if the node
names and titles for these sections are all different, they are difficult for users to find.

So, there is a convention to name such sections with a phrase beginning with the word
‘Invoking’, as in ‘Invoking Emacs’; this way, users can find the section easily.

ANSI C Syntax

When you use @example to describe a C function’s calling conventions, use the ANSI C
syntax, like this:

void dld_init (char *@var{path});

And in the subsequent discussion, refer to the argument values by writing the same argument
names, again highlighted with @var.

Avoid the obsolete style that looks like this:

#include <dld.h>

dld_init (path)

char *path;

Also, it is best to avoid writing #include above the declaration just to indicate that
the function is declared in a header file. The practice may give the misimpression that the
#include belongs near the declaration of the function. Either state explicitly which header
file holds the declaration or, better yet, name the header file used for a group of functions at
the beginning of the section that describes the functions.

Node Length

Keep nodes (sections) to a reasonable length, whatever reasonable might be in the given
context. Don’t hesitate to break up long nodes into subnodes and have an extensive tree
structure; that’s what it’s there for. Many times, readers will probably try to find a single
specific point in the manual, using search, indexing, or just plain guessing, rather than
reading the whole thing from beginning to end.

Appendix B: Tips and Hints 246

You can use the texi-elements-by-size utility to see a list of all nodes (or sections) in
the document, sorted by size (either lines or words), to find candidates for splitting. It’s in
the util/ subdirectory of the Texinfo sources.

Bad Examples

Here are several examples of bad writing to avoid:

In this example, say, “ . . . you must @dfn{check in} the new version.” That flows better.

When you are done editing the file, you must perform a @dfn{check in}.
In the following example, say, “. . . makes a unified interface such as VC mode possible.”

SCCS, RCS and other version-control systems all perform similar functions in
broadly similar ways (it is this resemblance which makes a unified control mode
like this possible).

And in this example, you should specify what ‘it’ refers to:

If you are working with other people, it assists in coordinating everyone’s changes
so they do not step on each other.

And Finally . . .

• Pronounce TEX as if the ‘X’ were a Greek ‘chi’, as the last sound in the name ‘Bach’.
But pronounce Texinfo as in ‘speck’: “teckinfo”.

• Write notes for yourself at the very end of a Texinfo file after the @bye. None of the
processors process text after the @bye; it is as if the text were within @ignore . . . @end
ignore.

247

Appendix C Sample Texinfo Files

This appendix includes texts to be used in GNU manuals.

C.1 GNU Sample Texts

Following is a sample Texinfo document with the full texts that should be used (adapted as
necessary) in GNU manuals.

As well as the legal texts, it also serves as a practical example of how many elements in
a GNU system can affect the manual. If you’re not familiar with all these different elements,
don’t worry. They’re not required and a perfectly good manual can be written without them.
They’re included here nonetheless because many manuals do (or could) benefit from them.

See [Short Sample], page 11, for a minimal example of a Texinfo file.

Here are some notes on the example:

• The version.texi in the @include command is maintained automatically by Automake
(see Section “Texinfo” in GNU Automake). It sets the ‘VERSION’, ‘UPDATED’ and
‘UPDATED-MONTH’ values used elsewhere. If your distribution doesn’t use Automake, but
you do use Emacs, you may find the time-stamp.el package helpful (see Section “Time
Stamps” in The GNU Emacs Manual).

• The @syncodeindex command reflects the recommendation to use only one index where
possible, to make it easier for readers to look up index entries.

• The @dircategory specify a category for the manual. It is used for constructing the
Info directory. See Section 2.6 [Directory Category], page 16, which includes a variety
of recommended category names. See Section 20.1.4 [Installing Dir Entries], page 198.

• The ‘Invoking’ node is a GNU standard to help users find the basic information about
command-line usage of a given program. See Section “Manual Structure Details” in
GNU Coding Standards.

• This sample shows how to includes the FDL in a manual using the @include command.
The fdl.texi file is available in the Texinfo and other GNU source distributions. It
is also available on the GNU website (at https://www.gnu.org/licenses/fdl-1.3.
html) along with guidance for using it.

• If the FSF is not the copyright holder, then use the appropriate name.

• For documents that express your personal views, feelings or experiences, it is more
appropriate to use a license permitting only verbatim copying, rather than the FDL.
See Section C.2 [Verbatim Copying License], page 249.

Here is the sample document:

\input texinfo @c -*-texinfo-*-

@comment %**start of header

@include version.texi

@settitle GNU Sample @value{VERSION}

@syncodeindex pg cp

@comment %**end of header

@copying

This manual is for GNU Sample (version @value{VERSION}, @value{UPDATED}),

https://www.gnu.org/licenses/fdl-1.3.html
https://www.gnu.org/licenses/fdl-1.3.html

Appendix C: Sample Texinfo Files 248

which is an example in the Texinfo documentation.

Copyright @copyright{} 2016 Free Software Foundation, Inc.

@quotation

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3 or

any later version published by the Free Software Foundation; with no

Invariant Sections, with no Front-Cover Texts, and with no Back-Cover

Texts. A copy of the license is included in the section entitled

``GNU Free Documentation License''.

@end quotation

@end copying

@dircategory Texinfo documentation system

@direntry

* sample: (sample)Invoking sample.

@end direntry

@titlepage

@title GNU Sample

@subtitle for version @value{VERSION}, @value{UPDATED}

@author A.U. Thor (@email{bug-sample@@gnu.org})

@page

@vskip 0pt plus 1filll

@insertcopying

@end titlepage

@contents

@node Top

@top GNU Sample

This manual is for GNU Sample (version @value{VERSION}, @value{UPDATED}).

@menu

* Invoking sample::

* GNU Free Documentation License::

* Index::

@end menu

@node Invoking sample

@chapter Invoking sample

@pindex sample

@cindex invoking @command{sample}

Appendix C: Sample Texinfo Files 249

This is a sample manual. There is no sample program to

invoke, but if there were, you could see its basic usage

and command line options here.

@node GNU Free Documentation License

@appendix GNU Free Documentation License

@include fdl.texi

@node Index

@unnumbered Index

@printindex cp

@bye

C.2 Verbatim Copying License

For software manuals and other documentation, it is critical to use a license permitting free
redistribution and updating, so that when a free program is changed, the documentation
can be updated as well.

On the other hand, for documents that express your personal views, feelings or experiences,
it is more appropriate to use a license permitting only verbatim copying.

Here is a sample text for such a license permitting verbatim copying only. This is just
the license text itself. For a complete sample document, see the previous sections.

@copying

This document is a sample for allowing verbatim copying only.

Copyright @copyright{} 2016 Free Software Foundation, Inc.

@quotation

Permission is granted to make and distribute verbatim copies

of this entire document without royalty provided the

copyright notice and this permission notice are preserved.

@end quotation

@end copying

C.3 All-permissive Copying License

For software manuals and other documentation, it is important to use a license permitting
free redistribution and updating, so that when a free program is changed, the documentation
can be updated as well.

On the other hand, for small supporting files, short manuals (under 300 lines long) and
rough documentation (README files, INSTALL files, etc.), the full FDL would be overkill.
They can use a simple all-permissive license.

Here is a sample text for such an all-permissive license. This is just the license text itself.
For a complete sample document, see the previous sections.

Appendix C: Sample Texinfo Files 250

Copyright @copyright{} 2016 Free Software Foundation, Inc.

Copying and distribution of this file, with or without modification,

are permitted in any medium without royalty provided the copyright

notice and this notice are preserved.

251

Appendix D Using Texinfo Mode

You may edit a Texinfo file with any text editor you choose. A Texinfo file is no different
from any other ASCII file. However, GNU Emacs comes with a special mode, called Texinfo
mode, that provides Emacs commands and tools to help ease your work.

D.1 Texinfo Mode Overview

Texinfo mode provides special features for working with Texinfo files. You can:

• Insert frequently used @-commands.

• Automatically create @node lines.

• Show the structure of a Texinfo source file.

• Automatically create or update the ‘Next’, ‘Previous’, and ‘Up’ pointers of a node.

• Automatically create or update menus.

• Automatically create a master menu.

• Format a part or all of a file for Info.

• Typeset and print part or all of a file.

Perhaps the two most helpful features are those for inserting frequently used @-commands
and for creating node pointers and menus.

D.2 The Usual GNU Emacs Editing Commands

In most cases, the usual Text mode commands work the same in Texinfo mode as they
do in Text mode. Texinfo mode adds new editing commands and tools to GNU Emacs’
general purpose editing features. The major difference concerns filling. In Texinfo mode,
the paragraph separation variable and syntax table are redefined so that Texinfo commands
that should be on lines of their own are not inadvertently included in paragraphs. Thus, the
M-q (fill-paragraph) command will refill a paragraph but not mix an indexing command
on a line adjacent to it into the paragraph.

In addition, Texinfo mode sets the page-delimiter variable to the value of texinfo-
chapter-level-regexp; by default, this is a regular expression matching the commands for
chapters and their equivalents, such as appendices. With this value for the page delimiter,
you can jump from chapter title to chapter title with the C-x] (forward-page) and C-x [

(backward-page) commands and narrow to a chapter with the C-x n p (narrow-to-page)
command. (See Section “Pages” in The GNU Emacs Manual, for details about the page
commands.)

GNU Emacs automatically enters Texinfo mode when you visit a file with a .texinfo,
.texi or .txi extension. Also, Emacs switches to Texinfo mode when you visit a file that
has ‘-*-texinfo-*-’ in its first line. If ever you are in another mode and wish to switch to
Texinfo mode, type M-x texinfo-mode.

Like all other Emacs features, you can customize or enhance Texinfo mode as you wish.
In particular, the keybindings are very easy to change. The keybindings described here are
the default or standard ones.

Appendix D: Using Texinfo Mode 252

D.3 Inserting Frequently Used Commands

Texinfo mode provides commands to insert various frequently used @-commands into the
buffer. You can use these commands to save keystrokes.

The insert commands are invoked by typing C-c twice and then the first letter of the
@-command:

C-c C-c c

M-x texinfo-insert-@code

Insert @code{} and put the cursor between the braces.

C-c C-c d

M-x texinfo-insert-@dfn

Insert @dfn{} and put the cursor between the braces.

C-c C-c e

M-x texinfo-insert-@end

Insert @end and attempt to insert the correct following word, such as ‘example’
or ‘table’. (This command does not handle nested lists correctly, but inserts
the word appropriate to the immediately preceding list.)

C-c C-c i

M-x texinfo-insert-@item

Insert @item and put the cursor at the beginning of the next line.

C-c C-c k

M-x texinfo-insert-@kbd

Insert @kbd{} and put the cursor between the braces.

C-c C-c n

M-x texinfo-insert-@node

Insert @node and a comment line listing the sequence for the ‘Next’, ‘Previous’,
and ‘Up’ nodes. Leave point after the @node.

C-c C-c o

M-x texinfo-insert-@noindent

Insert @noindent and put the cursor at the beginning of the next line.

C-c C-c r

M-x texinfo-insert-dwim-@ref

This function and binding were added in Emacs 27.1. Inserts one of @pxref{},
@xref{}, or @ref{} based on the text around point; calling it near an unclosed
preceding open parenthesis results in @pxref{}, at the beginning of a sentence
or at (point-min) yields @xref{}, any other location (including inside a word),
will result in @ref{}. A numeric argument says how many words the braces
should surround. Puts the cursor between the braces.

C-c C-c s

M-x texinfo-insert-@samp

Insert @samp{} and put the cursor between the braces.

C-c C-c t

M-x texinfo-insert-@table

Insert @table followed by a SPC and leave the cursor after the SPC.

Appendix D: Using Texinfo Mode 253

C-c C-c v

M-x texinfo-insert-@var

Insert @var{} and put the cursor between the braces.

C-c C-c x

M-x texinfo-insert-@example

Insert @example and put the cursor at the beginning of the next line.

C-c C-c {

M-x texinfo-insert-braces

Insert {} and put the cursor between the braces.

C-c }

C-c]

M-x up-list

Move from between a pair of braces forward past the closing brace. Typing C-c

] is easier than typing C-c }, which is, however, more mnemonic; hence the two
keybindings. (Also, you can move out from between braces by typing C-f.)

To put a command such as @code{...} around an existing word, position the cursor in
front of the word and type C-u 1 C-c C-c c. This makes it easy to edit existing plain text.
The value of the prefix argument tells Emacs how many words following point to include
between braces—‘1’ for one word, ‘2’ for two words, and so on. Use a negative argument to
enclose the previous word or words. If you do not specify a prefix argument, Emacs inserts
the @-command string and positions the cursor between the braces. This feature works only
for those @-commands that operate on a word or words within one line, such as @kbd and
@var.

This set of insert commands was created after analyzing the frequency with which different
@-commands are used in the GNU Emacs Manual and the GDB Manual. If you wish to
add your own insert commands, you can bind a keyboard macro to a key, use abbreviations,
or extend the code in texinfo.el.

C-c C-c C-d (texinfo-start-menu-description) is an insert command that works
differently from the other insert commands. It inserts a node’s section or chapter title in
the space for the description in a menu entry line. (A menu entry has three parts, the
entry name, the node name, and the description. Only the node name is required, but a
description helps explain what the node is about. See Section 3.9.4 [The Parts of a Menu],
page 36.)

To use texinfo-start-menu-description, position point in a menu entry line and type
C-c C-c C-d. The command looks for and copies the title that goes with the node name,
and inserts the title as a description; it positions point at the beginning of the inserted text
so you can edit it. The function does not insert the title if the menu entry line already
contains a description.

This command is only an aid to writing descriptions; it does not do the whole job. You
must edit the inserted text since a title tends to use the same words as a node name but a
useful description uses different words.

Appendix D: Using Texinfo Mode 254

D.4 Showing the Sectioning Structure of a File

You can show the sectioning structure of a Texinfo file by using the C-c C-s command
(texinfo-show-structure). This command lists the lines that begin with the @-commands
for @chapter, @section, and the like. It constructs what amounts to a table of contents.
These lines are displayed in another buffer called the ‘*Occur*’ buffer. In that buffer, you
can position the cursor over one of the lines and use the C-c C-c command (occur-mode-
goto-occurrence), to jump to the corresponding spot in the Texinfo file.

C-c C-s

M-x texinfo-show-structure

Show the @chapter, @section, and such lines of a Texinfo file.

C-c C-c

M-x occur-mode-goto-occurrence

Go to the line in the Texinfo file corresponding to the line under the cursor in
the *Occur* buffer.

If you call texinfo-show-structure with a prefix argument by typing C-u C-c C-s, it
will list not only those lines with the @-commands for @chapter, @section, and the like,
but also the @node lines. You can use texinfo-show-structure with a prefix argument to
check whether the ‘Next’, ‘Previous’, and ‘Up’ pointers of an @node line are correct.

Often, when you are working on a manual, you will be interested only in the structure
of the current chapter. In this case, you can mark off the region of the buffer that you
are interested in by using the C-x n n (narrow-to-region) command and texinfo-show-

structure will work on only that region. To see the whole buffer again, use C-x n w (widen).
(See Section “Narrowing” in The GNU Emacs Manual, for more information about the
narrowing commands.)

In addition to providing the texinfo-show-structure command, Texinfo mode sets the
value of the page delimiter variable to match the chapter-level @-commands. This enables you
to use the C-x] (forward-page) and C-x [(backward-page) commands to move forward
and backward by chapter, and to use the C-x n p (narrow-to-page) command to narrow
to a chapter. See Section “Pages” in The GNU Emacs Manual, for more information about
the page commands.

D.4.1 Using texinfo-show-structure

It is not always easy to keep track of the nodes, chapters, sections, and subsections of a
Texinfo file. This is especially true if you are revising or adding to a Texinfo file that someone
else has written.

In GNU Emacs, in Texinfo mode, the texinfo-show-structure command lists all the
lines that begin with the @-commands that specify the structure: @chapter, @section,
@appendix, and so on. With an argument (C-u as prefix argument, if interactive), the
command also shows the @node lines. The texinfo-show-structure command is bound
to C-c C-s in Texinfo mode, by default.

The lines are displayed in a buffer called the ‘*Occur*’ buffer, indented by hierarchical level.
For example, here is a part of what was produced by running texinfo-show-structure on
this manual:

Appendix D: Using Texinfo Mode 255

Lines matching "^@\\(chapter \\|sect\\|subs\\|subh\\|

unnum\\|major\\|chapheading \\|heading \\|appendix\\)"

in buffer texinfo.texi.

...

4177:@chapter Nodes

4198: @heading Two Paths

4231: @section Node and Menu Illustration

4337: @section The @code{@@node} Command

4393: @subheading Choosing Node and Pointer Names

4417: @subsection How to Write a @code{@@node} Line

4469: @subsection @code{@@node} Line Tips

...

This says that lines 4337, 4393, and 4417 of texinfo.texi begin with the @section,
@subheading, and @subsection commands respectively. If you move your cursor into
the ‘*Occur*’ window, you can position the cursor over one of the lines and use the C-c

C-c command (occur-mode-goto-occurrence), to jump to the corresponding spot in the
Texinfo file. See Section “Using Occur” in The GNU Emacs Manual, for more information
about occur-mode-goto-occurrence.

The first line in the ‘*Occur*’ window describes the regular expression specified by texinfo-
heading-pattern. This regular expression is the pattern that texinfo-show-structure

looks for. See Section “Using Regular Expressions” in The GNU Emacs Manual, for more
information.

When you invoke the texinfo-show-structure command, Emacs will display the struc-
ture of the whole buffer. If you want to see the structure of just a part of the buffer, of one
chapter, for example, use the C-x n n (narrow-to-region) command to mark the region.
(See Section “Narrowing” in The GNU Emacs Manual.) This is how the example used above
was generated. (To see the whole buffer again, use C-x n w (widen).)

If you call texinfo-show-structure with a prefix argument by typing C-u C-c C-s, it
will list lines beginning with @node as well as the lines beginning with the @-sign commands
for @chapter, @section, and the like.

You can remind yourself of the structure of a Texinfo file by looking at the list in the
‘*Occur*’ window; and if you have mis-named a node or left out a section, you can correct
the mistake.

D.4.2 Using occur

Sometimes the texinfo-show-structure command produces too much information. Per-
haps you want to remind yourself of the overall structure of a Texinfo file, and are overwhelmed
by the detailed list produced by texinfo-show-structure. In this case, you can use the
occur command directly. To do this, type:

M-x occur

and then, when prompted, type a regexp, a regular expression for the pattern you want
to match. (See Section “Regular Expressions” in The GNU Emacs Manual.) The occur

command works from the current location of the cursor in the buffer to the end of the buffer.
If you want to run occur on the whole buffer, place the cursor at the beginning of the buffer.

Appendix D: Using Texinfo Mode 256

For example, to see all the lines that contain the word ‘@chapter’ in them, just type
‘@chapter’. This will produce a list of the chapters. It will also list all the sentences with
‘@chapter’ in the middle of the line.

If you want to see only those lines that start with the word ‘@chapter’, type ‘^@chapter’
when prompted by occur. If you want to see all the lines that end with a word or phrase,
end the last word with a ‘$’; for example, ‘catching mistakes$’. This can be helpful when
you want to see all the nodes that are part of the same chapter or section and therefore have
the same ‘Up’ pointer.

See Section “Using Occur” in The GNU Emacs Manual, for more information.

D.5 Updating Nodes and Menus

The texi2any command will create an Info file for a hierarchically organized Texinfo file that
lacks ‘Next’, ‘Previous’ and ‘Up’ pointers (see Section 3.1 [Writing a Node], page 27). Thus,
in general, there is no need for explicit ‘Next’, ‘Previous’, and ‘Up’ pointers. In this setting,
menus will be added automatically for nodes without an explicit menu. (See Chapter 19
[Generic Translator texi2any], page 164, for more information about texi2any.)

If you still want explicit pointers, Texinfo mode provides commands for automatically
creating or updating menus and node pointers. The commands are called “update” commands
because their most frequent use is for updating a Texinfo file after you have worked on it;
but you can use them to insert the ‘Next’, ‘Previous’, and ‘Up’ pointers into an @node line
that has none and to create menus in a file that has none.

D.5.1 The Updating Commands

You can use the updating commands to:

• insert or update the ‘Next’, ‘Previous’, and ‘Up’ pointers of a node,

• insert or update the menu for a section, and

• create a master menu for a Texinfo source file.

You can also use the commands to update all the nodes and menus in a region or in a
whole Texinfo file.

The updating commands work only with conventional Texinfo files, which are structured
hierarchically like books. In such files, a structuring command line must follow closely after
each @node line, except for the ‘Top’ @node line. (A structuring command line is a line
beginning with @chapter, @section, or other similar command.)

You can write the structuring command line on the line that follows immediately after an
@node line or else on the line that follows after a single @comment line or a single @ifinfo

line. You cannot interpose more than one line between the @node line and the structuring
command line; and you may interpose only a @comment line or an @ifinfo line.

Commands which work on a whole buffer require that the ‘Top’ node be followed by a
node with a @chapter or equivalent-level command. The menu updating commands will not
create a main or master menu for a Texinfo file that has only @chapter-level nodes! The
menu updating commands only create menus within nodes for lower level nodes. To create
a menu of chapters, you must provide a ‘Top’ node.

The menu updating commands remove menu entries that refer to other Info files since
they do not refer to nodes within the current buffer. This is a deficiency. Rather than use

Appendix D: Using Texinfo Mode 257

menu entries, you can use cross references to refer to other Info files. None of the updating
commands affect cross-references.

Texinfo mode has five updating commands that are used most often: two are for updating
the node pointers or menu of a single node (or a region); two are for updating every node
pointer and menu in a file; and one, the texinfo-master-menu command, is for creating a
master menu for a complete file, and optionally, for updating every node and menu in the
whole Texinfo file.

The texinfo-master-menu command is the primary command:

C-c C-u m

M-x texinfo-master-menu

Create or update a master menu that includes all the other menus (incorporating
the descriptions from pre-existing menus, if any).

With an argument (prefix argument, C-u, if interactive), first create or update
all the nodes and all the regular menus in the buffer before constructing the
master menu. (See Section 2.10 [The Top Node and Master Menu], page 23, for
more about a master menu.)

For texinfo-master-menu to work, the Texinfo file must have a ‘Top’ node and
at least one subsequent node.

After extensively editing a Texinfo file, you can type the following:

C-u M-x texinfo-master-menu

or
C-u C-c C-u m

This updates all the nodes and menus completely and all at once.

The other major updating commands do smaller jobs and are designed for the person
who updates nodes and menus as he or she writes a Texinfo file.

The commands are:

C-c C-u C-n

M-x texinfo-update-node

Insert the ‘Next’, ‘Previous’, and ‘Up’ pointers for the node that point is within
(i.e., for the @node line preceding point). If the @node line has pre-existing
‘Next’, ‘Previous’, or ‘Up’ pointers in it, the old pointers are removed and new
ones inserted. With an argument (prefix argument, C-u, if interactive), this
command updates all @node lines in the region (which is the text between point
and mark).

C-c C-u C-m

M-x texinfo-make-menu

Create or update the menu in the node that point is within. With an argument
(C-u as prefix argument, if interactive), the command makes or updates menus
for the nodes which are either within or a part of the region.

Whenever texinfo-make-menu updates an existing menu, the descriptions from
that menu are incorporated into the new menu. This is done by copying
descriptions from the existing menu to the entries in the new menu that have
the same node names. If the node names are different, the descriptions are not
copied to the new menu.

Appendix D: Using Texinfo Mode 258

C-c C-u C-e

M-x texinfo-every-node-update

Insert or update the ‘Next’, ‘Previous’, and ‘Up’ pointers for every node in the
buffer.

C-c C-u C-a

M-x texinfo-all-menus-update

Create or update all the menus in the buffer. With an argument (C-u as prefix
argument, if interactive), first insert or update all the node pointers before
working on the menus.

If a master menu exists, the texinfo-all-menus-update command updates it;
but the command does not create a new master menu if none already exists.
(Use the texinfo-master-menu command for that.)

When working on a document that does not merit a master menu, you can type
the following:

C-u C-c C-u C-a

or
C-u M-x texinfo-all-menus-update

This updates all the nodes and menus.

The texinfo-column-for-description variable specifies the column to which menu
descriptions are indented. By default, the value is 32 although it can be useful to reduce it to
as low as 24. You can set the variable via customization (see Section “Customization” in The
GNU Emacs Manual) or with the M-x set-variable command (see Section “Examining
and Setting Variables” in The GNU Emacs Manual).

Also, the texinfo-indent-menu-description command may be used to indent existing
menu descriptions to a specified column. Finally, if you wish, you can use the texinfo-

insert-node-lines command to insert missing @node lines into a file. In particular, you
can ignore @node lines altogether in your first draft and then use the texinfo-insert-

node-lines command to create @node lines for you. However, we do not recommend this
practice. It is better to name the node itself at the same time that you write a segment so
you can easily make cross-references. Useful cross-references are an especially important
feature of a good Texinfo manual. (See Section D.5.5 [Other Updating Commands], page 260,
for more information.)

D.5.2 Updating Requirements

To use the updating commands, you must organize the Texinfo file hierarchically with
chapters, sections, subsections, and the like. When you construct the hierarchy of the
manual, do not ‘jump down’ more than one level at a time: you can follow the ‘Top’ node
with a chapter, but not with a section; you can follow a chapter with a section, but not with
a subsection. However, you may ‘jump up’ any number of levels at one time—for example,
from a subsection to a chapter.

Each @node line, with the exception of the line for the ‘Top’ node, must be followed by a
line with a structuring command such as @chapter, @section, or @unnumberedsubsec.

Each @node line/structuring-command line combination must look either like this:

Appendix D: Using Texinfo Mode 259

@node Comments, Minimum, Conventions, Overview

@comment node-name, next, previous, up

@section Comments

or like this (without the @comment line):

@node Comments, Minimum, Conventions, Overview

@section Comments

or like this (without the explicit node pointers):

@node Comments

@section Comments

In this example, ‘Comments’ is the name of both the node and the section. The next node
is called ‘Minimum’ and the previous node is called ‘Conventions’. The ‘Comments’ section
is within the ‘Overview’ node, which is specified by the ‘Up’ pointer.

If a file has a ‘Top’ node, it must be called ‘top’ or ‘Top’ and be the first node in the file.

The menu updating commands create a menu of sections within a chapter, a menu of
subsections within a section, and so on. This means that you must have a ‘Top’ node if you
want a menu of chapters.

D.5.3 Update Outer File and Include Files

GNU Emacs Texinfo mode provides the texinfo-multiple-files-update command. This
command creates or updates ‘Next’, ‘Previous’, and ‘Up’ pointers of included files as well as
those in the outer or overall Texinfo file, and it creates or updates a main menu in the outer
file. Depending on whether you call it with optional arguments, the command updates only
the pointers in the first @node line of the included files or all of them.

With C-u as a prefix argument, create and insert a master menu in the outer file. With
a numeric prefix argument, such as C-u 2, first update all the menus and all the ‘Next’,
‘Previous’, and ‘Up’ pointers of all the included files before creating and inserting a master
menu in the outer file.

In more details:

M-x texinfo-multiple-files-update

Called without any arguments:

− Create or update the ‘Next’, ‘Previous’, and ‘Up’ pointers of the first @node
line in each file included in an outer or overall Texinfo file.

− Create or update the ‘Top’ level node pointers of the outer or overall file.

− Create or update a main menu in the outer file.

C-u M-x texinfo-multiple-files-update

Called with C-u as a prefix argument:

− Create or update pointers in the first @node line in each included file.

− Create or update the ‘Top’ level node pointers of the outer file.

− Create and insert a master menu in the outer file. The master menu is
made from all the menus in all the included files.

Appendix D: Using Texinfo Mode 260

C-u 8 M-x texinfo-multiple-files-update

Called with a numeric prefix argument, such as C-u 8:

− Create or update all the ‘Next’, ‘Previous’, and ‘Up’ pointers of all the
included files.

− Create or update all the menus of all the included files.

− Create or update the ‘Top’ level node pointers of the outer or overall file.

− And then create a master menu in the outer file. This is similar to invoking
texinfo-master-menu with an argument when you are working with just
one file.

Note the use of the prefix argument in interactive use: with a regular prefix argument,
just C-u, the texinfo-multiple-files-update command inserts a master menu; with a
numeric prefix argument, such as C-u 8, the command updates every pointer and menu in
all the files and then inserts a master menu.

D.5.4 Include Files Requirements

If you plan to use the texinfo-multiple-files-update command, the outer Texinfo file
that lists included files within it should contain nothing but the beginning and end parts of
a Texinfo file, and a number of @include commands listing the included files. It should not
even include indices, which should be listed in an included file of their own.

Moreover, each of the included files must contain exactly one highest level node (conven-
tionally, @chapter or equivalent), and this node must be the first node in the included file.
Furthermore, each of these highest level nodes in each included file must be at the same
hierarchical level in the file structure. Usually, each is a @chapter, an @appendix, or an
@unnumbered node. Thus, normally, each included file contains one, and only one, chapter
or equivalent-level node.

The outer file should contain only one node, the ‘Top’ node. It should not contain any
nodes besides the single ‘Top’ node. The texinfo-multiple-files-update command will
not process them.

D.5.5 Other Updating Commands

In addition to the major updating commands, Texinfo mode possesses several less frequently
used updating commands:

M-x texinfo-insert-node-lines

Insert @node lines before the @chapter, @section, and other sectioning com-
mands wherever they are missing throughout a region in a Texinfo file.

With an argument (C-u as prefix argument, if interactive), the command
texinfo-insert-node-lines not only inserts @node lines but also inserts the
chapter or section titles as the names of the corresponding nodes. In addition,
it inserts the titles as node names in pre-existing @node lines that lack names.
Since node names should be more concise than section or chapter titles, you
must manually edit node names so inserted.

For example, the following marks a whole buffer as a region and inserts @node
lines and titles throughout:

C-x h C-u M-x texinfo-insert-node-lines

Appendix D: Using Texinfo Mode 261

This command inserts titles as node names in @node lines; the texinfo-start-
menu-description command (see Section D.3 [Inserting], page 252) inserts
titles as descriptions in menu entries, a different action. However, in both cases,
you need to edit the inserted text.

M-x texinfo-indent-menu-description

Indent every description in the menu following point to the specified column.
You can use this command to give yourself more space for descriptions. With an
argument (C-u as prefix argument, if interactive), the texinfo-indent-menu-
description command indents every description in every menu in the region.
However, this command does not indent the second and subsequent lines of a
multi-line description.

M-x texinfo-sequential-node-update

Insert the names of the nodes immediately following and preceding the current
node as the ‘Next’ or ‘Previous’ pointers regardless of those nodes’ hierarchical
level. This means that the ‘Next’ node of a subsection may well be the next
chapter. Sequentially ordered nodes are useful for novels and other documents
that you read through sequentially. (However, in Info, the g * command lets you
look through the file sequentially, so sequentially ordered nodes are not strictly
necessary.) With an argument (prefix argument, if interactive), the texinfo-

sequential-node-update command sequentially updates all the nodes in the
region.

D.6 Formatting for Info

Texinfo mode provides several commands for formatting part or all of a Texinfo file for Info.

D.6.1 Running texi2any/makeinfo Within Emacs

The texi2any program provides better error messages than either of the Emacs formatting
commands. We recommend it. The texi2any program is independent of Emacs.

You can run texi2any (or makeinfo) in GNU Emacs Texinfo mode by using either the
makeinfo-region or the makeinfo-buffer commands. In Texinfo mode, the commands
are bound to C-c C-m C-r and C-c C-m C-b by default.

C-c C-m C-r

M-x makeinfo-region

Format the current region for Info.

C-c C-m C-b

M-x makeinfo-buffer

Format the current buffer for Info.

When you invoke makeinfo-region the output goes to a temporary buffer. When you
invoke makeinfo-buffer output goes to the file set with @setfilename (see Section 2.5.2
[@setfilename], page 13).

The Emacs makeinfo-region and makeinfo-buffer commands run the texi2any pro-
gram in a temporary shell buffer. If texi2any finds any errors, Emacs displays the error
messages in the temporary buffer.

Appendix D: Using Texinfo Mode 262

You can parse the error messages by typing C-x ` (next-error). This causes Emacs to
go to and position the cursor on the line in the Texinfo source that texi2any thinks caused
the error. See Section “Running make or Compilers Generally” in The GNU Emacs Manual,
for more information about using the next-error command.

In addition, you can kill the shell in which the texi2any command is running or make
the shell buffer display its most recent output.

C-c C-m C-k

M-x makeinfo-kill-job

Kill the current running texi2any (or makeinfo) job (from makeinfo-region

or makeinfo-buffer).

C-c C-m C-l

M-x makeinfo-recenter-output-buffer

Redisplay the texi2any shell buffer to display its most recent output.

(Note that the parallel commands for killing and recentering a TEX job are C-c C-t C-k and
C-c C-t C-l. See Section D.7.1 [Texinfo Mode Printing], page 263.)

You can specify options for texi2any by setting the makeinfo-options variable with
either the M-x customize or the M-x set-variable command, or by setting the variable in
your .emacs initialization file.

For example, you could write the following in your .emacs file:

(setq makeinfo-options

"--paragraph-indent=0 --no-split

--fill-column=70 --verbose")

For more information, see [texi2any Options], page 164, as well as “Easy Customization
Interface,” “Examining and Setting Variables,” and “Init File” in The GNU Emacs Manual.

D.6.2 The texinfo-format... Commands

In GNU Emacs in Texinfo mode, you can format part or all of a Texinfo file with the
texinfo-format-region command. This formats the current region and displays the
formatted text in a temporary buffer called ‘*Info Region*’.

Similarly, you can format a buffer with the texinfo-format-buffer command. This
command creates a new buffer and generates the Info file in it. Typing C-x C-s will save
the Info file under the name specified by the @setfilename line which must be near the
beginning of the Texinfo file.

C-c C-e C-r

texinfo-format-region

Format the current region for Info.

C-c C-e C-b

texinfo-format-buffer

Format the current buffer for Info.

The texinfo-format-region and texinfo-format-buffer commands provide you with
some error checking, and other functions can provide you with further help in finding
formatting errors. These procedures are described in an appendix; see Section D.10 [Catching

Appendix D: Using Texinfo Mode 263

Mistakes], page 269. However, the texi2any program provides better error checking (see
Section D.6.1 [texi2any in Emacs], page 261).

A peculiarity of the texinfo-format-buffer and texinfo-format-region commands
is that they do not indent (nor fill) paragraphs that contain @w or @* commands.

D.7 Formatting and Printing with Emacs

GNU Emacs can be used for formatting and printing with TEX, from an Emacs Shell. Texinfo
mode also provides predefined key commands for formatting and printing.

D.7.1 Formatting and Printing in Texinfo Mode

Texinfo mode provides several predefined key commands for TEX formatting and printing.
These include commands for sorting indices, looking at the printer queue, killing the
formatting job, and recentering the display of the buffer in which the operations occur.

Often, when you are writing a document, you want to typeset and print only part of a file
to see what it will look like. You can use the texinfo-tex-region and related commands
for this purpose. Use the texinfo-tex-buffer command to format all of a buffer.

For texinfo-tex-region or texinfo-tex-buffer to work, the file must start with a
‘\input texinfo’ line and must include a @settitle line. The file must end with @bye on
a line by itself. (When you use texinfo-tex-region, you must surround the @settitle

line with start-of-header and end-of-header lines.)

C-c C-t C-b

M-x texinfo-tex-buffer

Run texi2dvi on the buffer. In addition to running TEX on the buffer, this
command automatically creates or updates indices as needed.

C-c C-t C-r

M-x texinfo-tex-region

Run TEX on the current region.

If @-commands related to printed output are between the start-of-header and end-
of-header lines, then texinfo-tex-region will format the region accordingly.
For example, if you write the @smallbook command between the start-of-header
and end-of-header lines, texinfo-tex-region, will format the region in “small”
book size.

C-c C-t C-i

M-x texinfo-texindex

Run texindex to sort the indices of a Texinfo file formatted with texinfo-

tex-region. The texinfo-tex-region command does not run texindex au-
tomatically; it only runs the tex typesetting command. You must run the
texinfo-tex-region command a second time after sorting the raw index files
with the texindex command. (Usually, you do not format an index when
you format a region, only when you format a buffer. Now that the texi2dvi

command exists, there is little or no need for this command.)

Appendix D: Using Texinfo Mode 264

C-c C-t C-p

M-x texinfo-tex-print

Print a DVI file that was made with texinfo-tex-region or texinfo-tex-
buffer.

C-c C-t C-q

M-x tex-show-print-queue

Show the print queue.

C-c C-t C-d

M-x texinfo-delete-from-print-queue

Delete a job from the print queue; you will be prompted for the job number shown
by a preceding C-c C-t C-q command (texinfo-show-tex-print-queue).

C-c C-t C-k

M-x tex-kill-job

Kill the currently running TEX job started by either texinfo-tex-region or
texinfo-tex-buffer, or any other process running in the Texinfo shell buffer.

C-c C-t C-x

M-x texinfo-quit-job

Quit a TEX formatting job that has stopped because of an error by sending an
x to it. When you do this, TEX preserves a record of what it did in a .log file.

C-c C-t C-l

M-x tex-recenter-output-buffer

Redisplay the shell buffer in which the TEX printing and formatting commands
are run to show its most recent output.

Thus, the usual sequence of commands for formatting a buffer is as follows (with comments
to the right):

C-c C-t C-b Run texi2dvi on the buffer.
C-c C-t C-p Print the DVI file.
C-c C-t C-q Display the printer queue.

The Texinfo mode TEX formatting commands start a subshell in Emacs called the
tex-shell. The texinfo-tex-command, texinfo-texindex-command, and tex-dvi-

print-command commands are all run in this shell.

You can watch the commands operate in the ‘*tex-shell*’ buffer, and you can switch
to and from and use the ‘*tex-shell*’ buffer as you would any other shell buffer.

Appendix D: Using Texinfo Mode 265

The formatting and print commands depend on the values of several variables. The
default values are:

Variable Default value

texinfo-texi2dvi-command "texi2dvi"

texinfo-tex-command "tex"

texinfo-texindex-command "texindex"

texinfo-delete-from-print-queue-command "lprm"

texinfo-tex-trailer "@bye"

tex-start-of-header "%**start"

tex-end-of-header "%**end"

tex-dvi-print-command "lpr -d"

tex-show-queue-command "lpq"

You can change the values of these variables with the M-x set-variable command (see
Section “Examining and Setting Variables” in The GNU Emacs Manual), or with your
.emacs initialization file (see Section “Init File” in The GNU Emacs Manual).

Beginning with version 20, GNU Emacs offers a user-friendly interface, called Customize,
for changing values of user-definable variables. See Section “Easy Customization Interface”
in The GNU Emacs Manual, for more details about this. The Texinfo variables can be found
in the ‘Development/Docs/Texinfo’ group, once you invoke the M-x customize command.

D.7.2 Using the Local Variables List

Yet another way to apply the TEX formatting command to a Texinfo file is to put that
command in a local variables list at the end of the Texinfo file. You can then specify the
tex or texi2dvi commands as a compile-command and have Emacs run it by typing M-x

compile. This creates a special shell called the *compilation* buffer in which Emacs runs
the compile command. For example, at the end of the gdb.texi file, after the @bye, you
could put the following:

Local Variables:

compile-command: "texi2dvi gdb.texi"

End:

This technique is most often used by programmers who also compile programs this way; see
Section “Compilation” in The GNU Emacs Manual.

D.8 Texinfo Mode Summary

In Texinfo mode, each set of commands has default keybindings that begin with the same
keys. All the commands that are custom-created for Texinfo mode begin with C-c. The
keys are somewhat mnemonic.

Insert Commands

The insert commands are invoked by typing C-c twice and then the first letter of the
@-command to be inserted. (It might make more sense mnemonically to use C-c C-i, for
‘custom insert’, but C-c C-c is quick to type.)

C-c C-c c Insert ‘@code’.

C-c C-c d Insert ‘@dfn’.

Appendix D: Using Texinfo Mode 266

C-c C-c e Insert ‘@end’.

C-c C-c i Insert ‘@item’.

C-c C-c n Insert ‘@node’.

C-c C-c s Insert ‘@samp’.

C-c C-c v Insert ‘@var’.

C-c { Insert braces.
C-c]

C-c } Move out of enclosing braces.

C-c C-c C-d Insert a node’s section title
in the space for the description
in a menu entry line.

Show Structure

The texinfo-show-structure command is often used within a narrowed region.

C-c C-s List all the headings.

The Master Update Command

The texinfo-master-menu command creates a master menu; and can be used to update
every node and menu in a file as well.

C-c C-u m

M-x texinfo-master-menu

Create or update a master menu.

C-u C-c C-u m With C-u as a prefix argument, first
create or update all nodes and regular
menus, and then create a master menu.

Update Pointers

The update pointer commands are invoked by typing C-c C-u and then either C-n for
texinfo-update-node or C-e for texinfo-every-node-update.

C-c C-u C-n Update a node.
C-c C-u C-e Update every node in the buffer.

Update Menus

Invoke the update menu commands by typing C-c C-u and then either C-m for texinfo-
make-menu or C-a for texinfo-all-menus-update. To update both nodes and menus at
the same time, precede C-c C-u C-a with C-u.

C-c C-u C-m Make or update a menu.

C-c C-u C-a Make or update all
menus in a buffer.

C-u C-c C-u C-a With C-u as a prefix argument,
first create or update all nodes and
then create or update all menus.

Appendix D: Using Texinfo Mode 267

Format for Info

The Info formatting commands that are written in Emacs Lisp are invoked by typing C-c

C-e and then either C-r for a region or C-b for the whole buffer.

The Info formatting commands that are based on the texi2any/makeinfo program are
invoked by typing C-c C-m and then either C-r for a region or C-b for the whole buffer.

Use the texinfo-format... commands:

C-c C-e C-r Format the region.
C-c C-e C-b Format the buffer.

Use texi2any/makeinfo:

C-c C-m C-r Format the region.
C-c C-m C-b Format the buffer.
C-c C-m C-l Recenter the texi2any output buffer.
C-c C-m C-k Kill the texi2any formatting job.

Typeset and Print

The TEX typesetting and printing commands are invoked by typing C-c C-t and then another
control command: C-r for texinfo-tex-region, C-b for texinfo-tex-buffer, and so on.

C-c C-t C-r Run TEX on the region.
C-c C-t C-b Run texi2dvi on the buffer.
C-c C-t C-i Run texindex.

C-c C-t C-p Print the DVI file.
C-c C-t C-q Show the print queue.
C-c C-t C-d Delete a job from the print queue.
C-c C-t C-k Kill the current TEX formatting job.
C-c C-t C-x Quit a currently stopped TEX formatting job.
C-c C-t C-l Recenter the output buffer.

Other Updating Commands

The remaining updating commands do not have standard keybindings because they are
rarely used.

M-x texinfo-insert-node-lines

Insert missing @node lines in region.
With C-u as a prefix argument,
use section titles as node names.

M-x texinfo-multiple-files-update

Update a multi-file document.
With C-u 2 as a prefix argument,
create or update all nodes and menus
in all included files first.

M-x texinfo-indent-menu-description

Indent descriptions.

Appendix D: Using Texinfo Mode 268

M-x texinfo-sequential-node-update

Insert node pointers in strict sequence.

D.9 Direct Formatting of Info files

In general, there is no need to edit or process Info files. Most of the content of Info file
is plain text, but the tag tables require computing offsets for nodes and indirect files (see
Section 20.2 [Tag and Split Files], page 201), which is impractical. The Texinfo processors
output well-formatted Info from Texinfo input. Also, lot of information from the Texinfo
source is lost in the Info file. The Texinfo source is therefore more suitable to analyse a
manual, be it for error reporting, for statistics, or to set up translations.

Still, especially with manually written Info files, there are some situations where it may
be interesting to process Info files directly, in particular to compute Info files node offsets
and to compute split Info files file offsets. Two Emacs commands do that. Info-tagify

adds a tag table for a nonsplit file lacking one. This function is also useful for Info file
validation (see Section D.10.4 [Running Info-validate], page 272). It is also possible to
split a nonsplit Info file with Info-split.

D.9.1 Tagifying a File

Texinfo processors create tag tables automatically. The only exception arise when texinfo-

format-buffer is called with a prefix, as C-u M-x texinfo-format-buffer, to create an
non split Info file without a tag table (which can be useful in some cases for Info file validation,
see Section D.10.4.2 [Unsplit and Tagify], page 273). Adding a tag table is therefore more
generally useful for manually written Info files.

To create a tag table for an nonsplit file, visit the Info file you wish to tagify and type:

M-x Info-tagify

(Note the uppercase ‘I’ in Info-tagify.) This creates an Info file with a tag table. A tag
table is part of a well formed Info file (see Section 20.2 [Tag and Split Files], page 201). A
tag table is also needed to validate or split the Info file.

D.9.2 Splitting a File Manually

You should split a large file or else let the texinfo-format-buffer or makeinfo-buffer
command do it for you automatically. (Generally you will let one of the formatting commands
do this job for you. See Section D.6 [Info Formatting], page 261.)

The split-off files are called the indirect subfiles.

Tag tables are created automatically by the formatting command; you only need to
create a tag table yourself if you are doing the job manually. See Section D.9.1 [Tagifying],
page 268, for information about creating a tag table.

Visit the Info file you wish to tagify and split manually and type the two commands:

M-x Info-tagify

M-x Info-split

(Note that the ‘I’ in ‘Info’ is uppercase.)

When you use the Info-split command, the buffer is modified into a (small) Info file
which lists the indirect subfiles. This file should be saved in place of the original visited file.

Appendix D: Using Texinfo Mode 269

The indirect subfiles are written in the same directory the original file is in, with names
generated by appending ‘-’ and a number to the original file name.

The primary file still functions as an Info file, but it contains just the tag table and a
directory of subfiles. See Section 20.2 [Tag and Split Files], page 201.

D.10 Catching Mistakes

Besides mistakes in the content of your documentation, there are two kinds of mistake
you can make with Texinfo: you can make mistakes with @-commands, and you can make
mistakes with the structure of the nodes and chapters.

For finding problems with @-commands, you can run TEX or a region formatting command
on the region that has a problem; indeed, you can run these commands on each region as
you write it.

For finding problems with the structure of nodes and chapters, you can use C-c C-s

(texinfo-show-structure) and the related occur command and you can use the M-x

Info-validate command.

D.10.1 texi2any Preferred

The texi2any program does an excellent job of catching errors and reporting them—far
better than texinfo-format-region or texinfo-format-buffer. In addition, the various
functions for automatically creating and updating node pointers and menus remove many
opportunities for human error.

Use texi2any (or its Texinfo mode manifestations, makeinfo-region and makeinfo-

buffer) to format your file and check for other errors. This is the best way to work with
Texinfo. But if you cannot use texi2any, or your problem is very puzzling, then you may
want to use the tools described in this section.

D.10.2 Catching Errors with Info Formatting

After you have written part of a Texinfo file, you can use the texinfo-format-region or
the makeinfo-region command to see whether the region formats properly.

Most likely, however, you are reading this section because for some reason you cannot
use the makeinfo-region command; therefore, the rest of this section presumes that you
are using texinfo-format-region.

If you have made a mistake with an @-command, texinfo-format-region will stop
processing at or after the error and display an error message. To see where in the buffer the
error occurred, switch to the ‘*Info Region*’ buffer; the cursor will be in a position that is
after the location of the error. Also, the text will not be formatted after the place where the
error occurred (or more precisely, where it was detected).

For example, if you accidentally end a menu with the command @end menus with an ‘s’
on the end, instead of with @end menu, you will see an error message that says:

@end menus is not handled by texinfo

The cursor will stop at the point in the buffer where the error occurs, or not long after it.
The buffer will look like this:

Appendix D: Using Texinfo Mode 270

---------- Buffer: *Info Region* ----------

* Menu:

* Using texinfo-show-structure:: How to use

`texinfo-show-structure'

to catch mistakes.

* Running Info-validate:: How to check for

unreferenced nodes.

@end menus

?
---------- Buffer: *Info Region* ----------

The texinfo-format-region command sometimes provides slightly odd error messages.
For example, the following cross-reference fails to format:

(@xref{Catching Mistakes, for more info.)

In this case, texinfo-format-region detects the missing closing brace but displays a
message that says ‘Unbalanced parentheses’ rather than ‘Unbalanced braces’. This is
because the formatting command looks for mismatches between braces as if they were
parentheses.

Sometimes texinfo-format-region fails to detect mistakes. For example, in the follow-
ing, the closing brace is swapped with the closing parenthesis:

(@xref{Catching Mistakes), for more info.}

Formatting produces:

(*Note for more info.: Catching Mistakes)

The only way for you to detect this error is to realize that the reference should have
looked like this:

(*Note Catching Mistakes::, for more info.)

Incidentally, if you are reading this node in Info and type f RET (Info-follow-
reference), you will generate an error message that says:

No such node: "Catching Mistakes) The only way ...

This is because Info perceives the example of the error as the first cross-reference in this
node and if you type a RET immediately after typing the Info f command, Info will attempt
to go to the referenced node. If you type f catch TAB RET, Info will complete the node name
of the correctly written example and take you to the ‘Catching Mistakes’ node. (If you try
this, you can return from the ‘Catching Mistakes’ node by typing l (Info-last).)

D.10.3 Debugging with TEX

You can also catch mistakes when you format a file with TEX.

Usually, you will want to do this after you have run texinfo-format-buffer (or, better,
makeinfo-buffer) on the same file, because texinfo-format-buffer sometimes displays
error messages that make more sense than TEX. (See Section D.10.2 [Debugging with Info],
page 269, for more information.)

For example, TEX was run on a Texinfo file, part of which is shown here:

---------- Buffer: texinfo.texi ----------

Appendix D: Using Texinfo Mode 271

name of the Texinfo file as an extension. The

@samp{??} are `wildcards' that cause the shell to

substitute all the raw index files. (@xref{sorting

indices, for more information about sorting

indices.)

---------- Buffer: texinfo.texi ----------

(The cross-reference lacks a closing brace.) TEX produced the following output, after which
it stopped:

---------- Buffer: *tex-shell* ----------

Runaway argument?

{sorting indices, for more information about sorting

indices.) @ETC.

! Paragraph ended before @xref was complete.

<to be read again>

@par

l.27

?

---------- Buffer: *tex-shell* ----------

In this case, TEX produced an accurate and understandable error message:

Paragraph ended before @xref was complete.

‘@par’ is an internal TEX command of no relevance to Texinfo. ‘l.27’ means that TEX
detected the problem on line 27 of the Texinfo file. The ‘?’ is the prompt TEX uses in this
circumstance.

Unfortunately, TEX is not always so helpful, and sometimes you must truly be a Sherlock
Holmes to discover what went wrong.

In any case, if you run into a problem like this, you can do one of three things.

1. You can tell TEX to continue running and ignore just this error by typing RET at the ‘?’
prompt.

2. You can tell TEX to continue running and to ignore all errors as best it can by typing r

RET at the ‘?’ prompt.

This is often the best thing to do. However, beware: the one error may produce a
cascade of additional error messages as its consequences are felt through the rest of the
file. To stop TEX when it is producing such an avalanche of error messages, type C-c

(or C-c C-c, if you are running a shell inside Emacs).

3. You can tell TEX to stop this run by typing x RET at the ‘?’ prompt.

If you are running TEX inside Emacs, you need to switch to the shell buffer and line at
which TEX offers the ‘?’ prompt.

Sometimes TEX will format a file without producing error messages even though there
is a problem. This usually occurs if a command is not ended but TEX is able to continue
processing anyhow. For example, if you fail to end an itemized list with the @end itemize

command, TEX will write a DVI file that you can print out. The only error message that
TEX will give you is the somewhat mysterious comment:

(@end occurred inside a group at level 1)

Appendix D: Using Texinfo Mode 272

However, if you print the DVI file, you will find that the text of the file that follows the
itemized list is entirely indented as if it were part of the last item in the itemized list. The
error message is the way TEX says that it expected to find an @end command somewhere in
the file; but that it could not determine where it was needed.

Another source of notoriously hard-to-find errors is a missing @end group command. If
you ever are stumped by incomprehensible errors, look for a missing @end group command
first.

If the Texinfo file lacks header lines, TEX may stop in the beginning of its run and display
output that looks like the following. The ‘*’ indicates that TEX is waiting for input.

This is TeX, Version 3.14159 (Web2c 7.0)

(test.texinfo [1])

*

In this case, simply type \end RET after the asterisk. Then write the header lines in the
Texinfo file and run the TEX command again. (Note the use of the backslash, ‘\’. TEX uses
‘\’ instead of ‘@’; and in this circumstance, you are working directly with TEX, not with
Texinfo.)

D.10.4 Finding Badly Referenced Nodes

You can use the Info-validate command to check whether any of the ‘Next’, ‘Previous’,
‘Up’ or other node pointers fail to point to a node. This command checks that every node
pointer points to an existing node. The Info-validate command works only on Info files,
not on Texinfo files.

The texi2any program validates pointers automatically, so you do not need to use the
Info-validate command if you are using texi2any. With the customization variable
CHECK_NORMAL_MENU_STRUCTURE set, texi2any will also warn if the nodes pointers (either
explicitly or automatically set) are not consistent with the order of node menu entries.
texi2any does not check that every ‘Next’ pointer is matched by a ‘Previous’ (in the node
where the ‘Next’ points) which points back, since it may be correct for a non standard
document structure.

You only may need to use Info-validate if you are unable to run texi2any and instead
must create an Info file using texinfo-format-region or texinfo-format-buffer, or if
you write an Info file from scratch.

D.10.4.1 Using Info-validate

To use Info-validate, visit the Info file you wish to check and type:

M-x Info-validate

Note that the Info-validate command requires an uppercase ‘I’. You may also need to
create a tag table before running Info-validate. See Section D.9.1 [Tagifying], page 268.

If your file is valid, you will receive a message that says “File appears valid”. However,
if you have a pointer that does not point to a node, error messages will be displayed in a
buffer called ‘*problems in info file*’.

For example, Info-validate was run on a test file that contained only the first node of
this manual. One of the messages said:

In node "Overview", invalid Next: Texinfo Mode

Appendix D: Using Texinfo Mode 273

This meant that the node called ‘Overview’ had a ‘Next’ pointer that did not point to
anything (which was true in this case, since the test file had only one node in it).

Now suppose we add a node named ‘Texinfo Mode’ to our test case but we do not specify
a ‘Previous’ for this node. Then we will get the following error message:

In node "Texinfo Mode", should have Previous: Overview

This is because, with a standard document structure, every ‘Next’ pointer should be matched
by a ‘Previous’ (in the node where the ‘Next’ points) which points back.

Info-validate also checks that all menu entries and cross-references point to actual
nodes.

Info-validate requires a tag table and does not work with files that have been split.
(The texinfo-format-buffer command automatically splits large files.) In order to use
Info-validate on a large file, you must run texinfo-format-buffer with an argument
so that it does not split the Info file; and you must create a tag table for the unsplit file.

D.10.4.2 Creating an Unsplit File and Adding a Tag Table

You can run Info-validate only on a single Info file that has a tag table. The command will
not work on the indirect subfiles that are generated when a master file is split. If you have a
large file (longer than 300,000 bytes or so), you need to run the texinfo-format-buffer

or makeinfo-buffer command in such a way that it does not create indirect subfiles. You
will also need to create a tag table for the Info file. After you have done this, you can run
Info-validate and look for badly referenced nodes.

The first step is to create an unsplit Info file. To prevent texinfo-format-buffer from
splitting a Texinfo file into smaller Info files, give a prefix to the M-x texinfo-format-buffer

command:

C-u M-x texinfo-format-buffer

or else

C-u C-c C-e C-b

When you do this, texinfo-format-buffer will not split the file and will not create a tag
table for it.

After creating an unsplit Info file, you must create a tag table for it (see Section D.9.1
[Tagifying], page 268). Visit the unsplit Info file created by texinfo-format-buffer and
type:

M-x Info-tagify

The third step is to validate the Info file:

M-x Info-validate

(Note the uppercase ‘I’ in Info-validate.) In brief, the steps are:

C-u M-x texinfo-format-buffer

M-x Info-tagify

M-x Info-validate

After you have validated the node structure, you can rerun texinfo-format-buffer in
the normal way so it will construct a tag table and split the file automatically, or you can
make the tag table and split the file manually (see Section D.9.2 [Splitting], page 268).

Appendix D: Using Texinfo Mode 274

D.11 Batch Formatting

You can format Texinfo files for Info using batch-texinfo-format and Emacs batch mode.
You can run Emacs in batch mode from any shell, including a shell inside of Emacs. (See
Section “Initial Options” in The GNU Emacs Manual.)

Here is a shell command to format all the files that end in .texinfo in the current
directory:

emacs -batch -funcall batch-texinfo-format *.texinfo

Emacs processes all the files listed on the command line, even if an error occurs while
attempting to format some of them.

Run batch-texinfo-format only with Emacs in batch mode as shown; it is not interac-
tive. It kills the batch mode Emacs on completion.

batch-texinfo-format is convenient if you lack texi2any and want to format several
Texinfo files at once. When you use Batch mode, you create a new Emacs process. This
frees your current Emacs, so you can continue working in it. (When you run texinfo-

format-region or texinfo-format-buffer, you cannot use that Emacs for anything else
until the command finishes.)

275

Appendix E Global Document Commands

Here are additional commands which affect the document as a whole. Most of these
commands are for customizing the appearance of the printed output. They are generally all
given before the Top node, if they are given at all.

E.1 @setchapternewpage: Blank Pages Before Chapters

In an officially bound book, text is usually printed on both sides of the paper, chapters start
on right-hand pages, and right-hand pages have odd numbers. But in short reports, text
often is printed only on one side of the paper. Also in short reports, chapters sometimes
do not start on new pages, but are printed on the same page as the end of the preceding
chapter, after a small amount of vertical whitespace.

You can use the @setchapternewpage command with various arguments to specify how
chapters should be started in printed output and whether headers should be formatted for
printing on one or both sides of the paper (single-sided or double-sided printing).

Write the @setchapternewpage command at the beginning of a line followed by its
argument. For example, you would write the following to cause each chapter to start on a
fresh odd-numbered page:

@setchapternewpage odd

You can specify one of three alternatives with the @setchapternewpage command:

@setchapternewpage off

Typeset a new chapter on the same page as the last chapter, after skipping some
vertical whitespace. Also, format page headers for single-sided printing.

@setchapternewpage on

Start new chapters on new pages and format page headers for single-sided
printing. This is the form most often used for short reports or personal printing.
This is the default.

@setchapternewpage odd

Start new chapters on new, odd-numbered pages (right-handed pages) and
typeset for double-sided printing. This is the form most often used for books
and manuals.

Texinfo does not have a @setchapternewpage even command, because there is no
printing tradition of starting chapters or books on an even-numbered page.

If you don’t like the default headers that @setchapternewpage sets, you can explicit
control them with the @headings command. See Section E.2.1 [@headings], page 276.

At the beginning of a manual or book, pages are not numbered—for example, the title
and copyright pages of a book are not numbered. By convention, table of contents and
frontmatter pages are numbered with roman numerals and not in sequence with the rest of
the document.

The @setchapternewpage has no effect in output formats that do not have pages, such
as Info and HTML.

We recommend not including any @setchapternewpage command in your document
source at all, since such desired pagination is not intrinsic to the document. For a particular

Appendix E: Global Document Commands 276

hard copy run, if you don’t want the default output (no blank pages, same headers on all
pages) use the --texinfo option to texi2dvi to specify the output you want.

E.2 Page Headings

Most printed manuals contain headings along the top of every page except the title and
copyright pages. Some manuals also contain footings. Headings and footings have no
meaning in Info or the other output formats.

Texinfo provides two standard heading formats, one for manuals printed on one side
of each sheet of paper, and the other for manuals printed on both sides of the paper. By
default, nothing is specified for the footing of a Texinfo file, so the footing remains blank.

Texinfo also has several heading and footing commands that you can use to generate
your own heading and footing formats.

In Texinfo, headings and footings are single lines at the tops and bottoms of pages; you
cannot create multiline headings or footings. Each header or footer line is divided into three
parts: a left part, a middle part, and a right part. Any part, or a whole line, may be left
blank. Text for the left part of a header or footer line is set flushleft; text for the middle
part is centered; and, text for the right part is set flushright.

E.2.1 The @headings Command

The @headings command is rarely used. It specifies what kinds of page headings and
footings to print on each page. Usually, this is controlled by the @setchapternewpage

command. You need the @headings command only if the @setchapternewpage command
does not do what you want.

You can use @headings as follows:

@headings off

Turn off printing of page headings.

@headings single

Turn on page headings appropriate for single-sided printing.

@headings double

Turn on page headings appropriate for double-sided printing.

@headings singleafter

@headings doubleafter

Turn on single or double headings, respectively, after the current page is
output.

@headings on

Turn on page headings: single if ‘@setchapternewpage on’, double otherwise.

For example, suppose you write @setchapternewpage off before the @titlepage com-
mand to start a new chapter on the same page as the end of the last chapter. This command
also causes page headers to be typeset for single-sided printing. To cause page headers to be
typeset for double-sided printing, write @headings double.

You can stop any page headings at all from being generated by writing @headings off

on a line of its own, like this:

@headings off

Appendix E: Global Document Commands 277

E.2.2 Standard Heading Formats

Texinfo provides two standard heading formats, one for manuals printed on one side of each
sheet of paper, and the other for manuals printed on both sides of the paper.

The standard format for single-sided printing consists of a header line in which the
left-hand part contains the name of the chapter, the central part is blank, and the right-hand
part contains the page number. A single-sided page looks like this:

| |

| chapter page number |

| |

| Start of text ... |

| ... |

| |

In the standard double-sided format, the left part of the left-hand (even-numbered) page
contains the page number, the central part is blank, and the right part contains the title
(specified by the @settitle command). The left part of the right-hand (odd-numbered)
page contains the name of the chapter, the central part is blank, and the right part contains
the page number. An even-numbered page and an odd-numbered page, side by side as in an
open book, look like this:

_______________________ _______________________

| | | |

| page number title | | chapter page number |

| | | |

| Start of text ... | | More text ... |

| ... | | ... |

| | | |

The chapter name is preceded by the word “Chapter”, the chapter number and a colon.
This makes it easier to keep track of where you are in the manual.

Note that on pages where a new chapter starts, some text may be omitted from the
heading line.

By default, nothing is specified for the footing of a Texinfo file, so the footing remains
blank.

E.2.3 How to Make Your Own Headings

You can use the standard headings provided with Texinfo or specify your own. By default,
Texinfo has no footers, so if you specify them, the available page size for the main text will
be slightly reduced.

Texinfo provides six commands for specifying headings and footings:

• @everyheading and @everyfooting generate page headers and footers that are the
same for both even- and odd-numbered pages.

• @evenheading and @evenfooting commands generate headers and footers for even-
numbered (left-hand) pages.

• @oddheading and @oddfooting generate headers and footers for odd-numbered (right-
hand) pages.

Appendix E: Global Document Commands 278

You must cancel the predefined heading commands with the @headings off command
before defining your own specifications.

Here is how to place the chapter name at the left, the page number in the center, and
the date at the right of every header for both even- and odd-numbered pages:

@headings off

@everyheading @thischapter @| @thispage @| @today{}

You need to divide the left part from the central part and the central part from the right
part by inserting ‘@|’ between parts. Otherwise, the specification command will not be able
to tell where the text for one part ends and the next part begins.

Each part can contain text or @-commands. The text is printed as if the part were within
an ordinary paragraph in the body of the page. The @-commands replace themselves with
the page number, date, chapter name, or whatever.

Here are the six heading and footing commands:

@everyheading left @| center @| right
@everyfooting left @| center @| right

The ‘every’ commands specify the format for both even- and odd-numbered
pages. These commands are for documents that are printed on one side of each
sheet of paper, or for documents in which you want symmetrical headers or
footers.

@evenheading left @| center @| right
@oddheading left @| center @| right
@evenfooting left @| center @| right
@oddfooting left @| center @| right

The ‘even’ and ‘odd’ commands specify the format for even-numbered pages
and odd-numbered pages. These commands are for books and manuals that are
printed on both sides of each sheet of paper.

Use the ‘@this...’ series of @-commands to provide the names of chapters and sections
and the page number. You can use the ‘@this...’ commands in the left, center, or right
portions of headers and footers.

Here are the ‘@this...’ commands:

@thispage

Expands to the current page number.

@thissectionname

Expands to the name of the current section.

@thissectionnum

Expands to the number of the current section.

@thissection

Expands to the number and name of the current section, in the format ‘Section
1: Title’.

@thischaptername

Expands to the name of the current chapter.

Appendix E: Global Document Commands 279

@thischapternum

Expands to the number of the current chapter, or letter of the current appendix.

@thischapter

Expands to the number and name of the current chapter, in the format ‘Chapter
1: Title’.

@thistitle

Expands to the name of the document, as specified by the @settitle command.

@thisfile

For @include files only: expands to the name of the current @include file. If
the current Texinfo source file is not an @include file, this command has no
effect. This command does not provide the name of the current Texinfo source
file unless it is an @include file. (See Chapter 17 [Include Files], page 155, for
more information about @include files.)

You can also use the @today{} command, which expands to the current date, in ‘1 Jan 1900’
format.

Other @-commands and text are printed in a header or footer just as if they were in the
body of a page. It is useful to incorporate text, particularly when you are writing drafts:

@headings off

@everyheading @emph{Draft!} @| @thispage @| @thischapter

@everyfooting @| @| Version: 0.27: @today{}

Beware of overlong titles: they may overlap another part of the header or footer and blot
it out.

If you have very short chapters and/or sections, several of them can appear on a single
page. You can specify which chapters and sections you want @thischapter, @thissection
and other such macros to refer to on such pages as follows:

@everyheadingmarks ref
@everyfootingmarks ref

The ref argument can be either top (the @this... commands will refer to the
chapter/section at the top of a page) or bottom (the commands will reflect the
situation at the bottom of a page). These ‘@every...’ commands specify what
to do on both even- and odd-numbered pages.

@evenheadingmarks ref
@oddheadingmarks ref
@evenfootingmarks ref
@oddfootingmarks ref

These ‘@even...’ and ‘@odd...’ commands specify what to do on only even- or
odd-numbered pages, respectively. The ref argument is the same as with the
‘@every...’ commands.

Write these commands immediately after the @...contents commands, or after the
@end titlepage command if you don’t have a table of contents or if it is printed at the end
of your manual. These commands have no effect in LATEX.

By default, for TEX, the @this... commands reflect the situation at the bottom of a
page both in headings and in footings.

Appendix E: Global Document Commands 280

E.3 @paragraphindent: Controlling Paragraph Indentation

The Texinfo processors may insert whitespace at the beginning of the first line of each
paragraph, thereby indenting that paragraph. You can use the @paragraphindent command
to specify this indentation. Write a @paragraphindent command at the beginning of a line
followed by either ‘asis’ or a number:

@paragraphindent indent

The indentation is according to the value of indent:

asis Do not change the existing indentation (not implemented in printed output).

none

0 Omit all indentation.

n Indent by n space characters in Info output, by n ems in printed output.

The default value of indent is 3. @paragraphindent is ignored for HTML output.

It is best to write the @paragraphindent command before the end-of-header line at
the beginning of a Texinfo file, so the region formatting commands indent paragraphs as
specified. See [Start of Header], page 15.

E.4 @firstparagraphindent: Indenting After Headings

As you can see in the present manual, the first paragraph in any section is not indented
by default. Typographically, indentation is a paragraph separator, which means that
it is unnecessary when a new section begins. This indentation is controlled with the
@firstparagraphindent command:

@firstparagraphindent word

The first paragraph after a heading is indented according to the value of word:

none Prevents the first paragraph from being indented (default). This option is
ignored by makeinfo if @paragraphindent asis is in effect.

insert Include normal paragraph indentation. This respects the paragraph indentation
set by a @paragraphindent command (see Section E.3 [@paragraphindent],
page 280).

@firstparagraphindent is ignored for HTML and DocBook output.

It is best to write the @firstparagraphindent command before the end-of-header line
at the beginning of a Texinfo file, so the region formatting commands indent paragraphs as
specified. See [Start of Header], page 15.

E.5 @exampleindent: Environment Indenting

The Texinfo processors indent each line of @example and similar environments. You can
use the @exampleindent command to specify this indentation. Write an @exampleindent

command at the beginning of a line followed by either ‘asis’ or a number:

@exampleindent indent

The indentation is according to the value of indent:

asis Do not change the existing indentation (not implemented in printed output).

Appendix E: Global Document Commands 281

0 Omit all indentation.

n Indent environments by n space characters in Info output, by n ems in printed
output.

The default value of indent is 5 spaces in Info, and 0.4 in in printed output, which is
somewhat less. (The reduction is to help fit more characters onto physical lines in printed
manuals.)

It is best to write the @exampleindent command before the end-of-header line at the
beginning of a Texinfo file, so the region formatting commands indent paragraphs as specified.
See [Start of Header], page 15.

E.6 @smallbook: Printing “Small” Books

By default, TEX typesets pages for printing in an 8.5 by 11 inch format, which is the “letter”
size commonly used in the United States. However, you can direct TEX or LATEX to typeset
a document in a 7 by 9.25 inch format that is suitable for bound books by inserting the
following command on a line by itself at the beginning of the Texinfo file, before the title
page:

@smallbook

(Since many books are about 7 by 9.25 inches, this command might better have been called
the @regularbooksize command, but it came to be called the @smallbook command by
comparison to the 8.5 by 11 inch format.)

See Section 18.2 [Format with texi2dvi or texi2pdf], page 157, and Section 18.5
[Preparing for TEX], page 162, for other ways to format with @smallbook with TEX that do
not require changing the source file.

E.7 Printing on A4 Paper

You can format a document for printing on ISO 216 A4 paper size with the @afourpaper

command. Write the command on a line by itself near the beginning of the Texinfo file,
before the title page.

You may or may not prefer the formatting that results from the command @afourlatex.
There’s also @afourwide for A4 paper in wide format, @afivepaper for A5 paper, and
@bsixpaper for B6 paper.

See Section 18.2 [Format with texi2dvi or texi2pdf], page 157, and Section 18.5
[Preparing for TEX], page 162, for other ways to format for different paper sizes that do not
require changing the source file.

E.8 @pagesizes [width][, height]: Custom Page Sizes

You can explicitly specify the height and (optionally) width of the main text area on the
page with the @pagesizes command. Write this on a line by itself near the beginning of
the Texinfo file, before the title page. The height comes first, then the width if desired,
separated by a comma. Examples:

@pagesizes 200mm,150mm

and

@pagesizes 11.5in

Appendix E: Global Document Commands 282

This would be reasonable for printing on B5-size paper. To emphasize, this command
specifies the size of the text area, not the size of the paper (which is 250mm by 177mm for
B5, 14 in by 8.5 in for legal).

To make more elaborate changes, such as changing any of the page margins, you must
define a new command in texinfo.tex or texinfo.cnf.

See Section 18.2 [Format with texi2dvi or texi2pdf], page 157, and Section 18.5
[Preparing for TEX], page 162, for other ways to specify @pagesizes that do not require
changing the source file.

E.9 Microtypography

Some versions of TEX, namely pdfTEX and LuaTEX, have microtypography features. These
involve stretching font glyphs slightly, and allowing text to produce very slightly into the
margins. Use of these gives TEX more flexibility in breaking a paragraph into lines, and can
improve paragraph appearance by reducing hyphenation and producing a more consistent
typographic color.

texinfo.tex uses these features (‘microtype’ for short) when available. You can turn
microtype off by specifying ‘@microtype off’ in your input file; likewise, ‘@microtype on’
turns microtype back on.

The fonts used in LATEX output may not be scalable. If fonts are not scalable, using
microtypography could trigger an error when converting the LATEX output. Therefore mi-
crotypography is not turned on in the default case in LATEX output. It is possible to turn it
on with ‘@microtype on’. A way to get scalable fonts for the font used in the default LATEX
output is to install the CM-Super font package (http://ctan.org/pkg/cm-super).

The @microtype command does nothing for other output formats.

E.10 Magnification

You can attempt to direct TEX to typeset pages larger or smaller than usual with the \mag
TEX command. Everything that is typeset is scaled proportionally larger or smaller. (\mag
stands for “magnification”.) This is not a Texinfo @-command, but is a raw TEX command
that is prefixed with a backslash. You have to write this command between @tex and @end

tex (see Section 15.3 [Raw Formatter Commands], page 136).

Follow the \mag command with an ‘=’ and then a number that is 1000 times the
magnification you desire. For example, to print pages at 1.2 normal size, write the following
near the beginning of the Texinfo file, before the title page:

@tex

\global\mag=1200

@end tex

With some printing technologies, you can print normal-sized copies that look better than
usual by giving a larger-than-normal master to your print shop. They do the reduction, thus
effectively increasing the resolution.

Depending on your system, DVI files prepared with a nonstandard-\mag may not print
or may print only with certain magnifications. Be prepared to experiment.

http://ctan.org/pkg/cm-super

283

Appendix F Info Format Specification

Here we describe the technical details of the Info format.

In this formal description, the characters <>*()|=# are used for the language of the
description itself. Other characters are literal. The formal constructs used are typical: <...>
indicates a metavariable name, ‘=’ means definition, ‘*’ repetition, ‘?’ optional, ‘()’ grouping,
‘|’ alternation, and ‘#’ comment.

In general, programs that read Info files should try to be case-insensitive to keywords
that occur in the file (for example, ‘Tag Table’ and ‘Tag table’ should be equivalent) in
order to support Info-generating programs that use different capitalization.

We specify literal parentheses (those that are part of the Info format) with <lparen> and
<rparen>, meaning the single characters ‘(’ and ‘)’ respectively. Finally, the two-character
sequence ‘^x’ means the single character ‘CTRL-x’, for any x.

This format definition was written some 25 years after the Info format was first devised.
So in the event of conflicts between this definition and actual practice, practice wins. It
also assumes some general knowledge of Texinfo; it is meant to be a guide for implementors
rather than a rigid technical standard. We may refer back to other parts of this manual for
examples and definitions, rather than redundantly spelling out every detail.

F.1 Info Format: A Whole Manual

To begin, an Info manual is either nonsplit (contained wholly within a single file) or split
(across several files).

The syntax for a nonsplit manual is:

<nonsplit info file> =

<preamble>

<node>*

<tag table>?

<local variables>?

When split, there is a main file, which contains only pointers to the nodes given in other
subfiles. The main file looks like this:

<split info main file> =

<preamble>

<indirect table>

<tag table>

<local variables>?

The subfiles in a split manual have the following syntax:

<split info subfile> =

<preamble>

<node>*

Note that the tag table is not optional for split files, as it is used with the indirect table
to deduce which subfile a particular node is in.

Several of the sections in an Info file (such as nodes or tag tables) begin with a sequence:

<separator> = (^L)?^_(^L)?^J

That is, a ‘CTRL-_’ character followed by a newline, with optional formfeed characters.

Appendix F: Info Format Specification 284

F.2 Info Format: Preamble

The <preamble> is text at the beginning of all output files. It is not intended to be visible
by default in an Info viewer, but may be displayed upon user request.

<preamble> =

<identification> # "This is FILENAME, produced by ..."

<copying text> # Expansion of @copying text.

<dir entries> # Derived from @dircategory and @direntry.

These pieces are:

<identification line>

An arbitrary string beginning the output file, followed by a blank line.

<copying text>

The expansion of a @copying environment, if the manual has one (see Sec-
tion 2.7.1 [@copying], page 17).

<dir entries>

The result of any @dircategory and @direntry commands present in the
manual (see Section 20.1.4 [Installing Dir Entries], page 198).

F.3 Info Format: Indirect Table

<indirect table> =

<separator>

Indirect:

(<filename>: <bytepos>)*

The indirect table is written to the main file in the case of split output only. It specifies,
as a decimal integer, the starting byte position (zero-based) that the first node of each subfile
would have if the subfiles were concatenated together in order, not including the top-level
file. The first node of actual content is pointed to by the first entry.

As an example, suppose split output is generated for the GDB manual. The top-level file
gdb.info will contain something like this:

<separator>

Indirect:

gdb.info-1: 1878

gdb.info-2: 295733

...

This tells Info viewers that the first node of the manual occurs at byte 1878 of the file
gdb.info-1 (which would be after that file’s preamble.) The first node in the gdb.info-2
subfile would start at byte 295733 if gdb.info-2 were appended to gdb.info-1, including
any preamble sections in both files.

Unfortunately, Info-creating programs such as makeinfo have not always implemented
these rules perfectly, due to various bugs and oversights. Therefore, robust Info viewers
should fall back to searching “nearby” the given position for a node, instead of giving up
immediately if the position is not exactly at a node beginning.

Appendix F: Info Format Specification 285

F.4 Info Format: Tag Table

<tag table> =

<separator>

Tag Table:

(<lparen>Indirect<rparen>)?

(Node|Ref): <nodeid>^?<bytepos>

<separator>

End Tag Table

The ‘(Indirect)’ line appears in the case of split output only.

The tag table specifies the starting byte position of each node and anchor in the file. In
the case of split output, it is only written in the main output file.

Each line defines an identifier as either an anchor or a node, as specified. For exam-
ple, ‘Node: Top^?1647’ says that the node named ‘Top’ starts at byte 1647 while ‘Ref:
Overview-Footnote-1^?30045’ says that the anchor named ‘Overview-Footnote-1’ starts
at byte 30045. It is an error to define the same identifier both ways.

In the case of nonsplit output, the byte positions simply refer to the location in the
output file. In the case of split output, the byte positions refer to an imaginary file created
by concatenating all the split files (but not the top-level file). See the previous section.

Here is an example:

^_

Tag Table:

Node: Top^?89

Node: Ch1^?292

^_

End Tag Table

This specifies a manual with two nodes, ‘Top’ and ‘Ch1’, at byte positions 89 and 292
respectively. Because the ‘(Indirect)’ line is not present, the manual is not split.

Preamble sections or other non-node sections of files do not have a tag table entry.

F.5 Info Format: Local Variables

The local variables section is optional and is currently used to give the encoding information.
It may be augmented in the future.

<local variables> =

<separator>

Local Variables:

coding: <encoding>

End:

See Section 14.2 [@documentencoding], page 132.

F.6 Info Format: Regular Nodes

Regular nodes look like this:

<node> =

<separator>

Appendix F: Info Format Specification 286

File: <fn>, Node: <id1>, (Next: <id2>,)? (Prev: <id3>,)? Up: <id4>

<general text, until the next ^_ or end-of-file>

At least one space or tab must be present after each colon and comma, but any number of
spaces are ignored. The <id> node identifiers have following format:

<id> = (<lparen><infofile><rparen>)?<node-spec>?

<node-spec> = <nodename> | <nodename>

 = ^?

This <node> defines <id1> in file <fn>, which is typically either ‘manualname’ or
‘manualname.info’. No parenthesized <infofile> component may appear within <id1>.

Each of the identifiers after Next, Prev and Up refer to nodes or anchors within a file.
These pointers normally refer within the same file, but ‘(dir)’ is often used to point to the
top-level dir file. If an <infofile> component is used then the node name may be omitted,
in which case the node identifier refers to the ‘Top’ node within the referenced file.

The Next and Prev pointers are optional. The Up pointer is technically also optional,
although most likely this indicates a mistake in the node structuring. Conventionally, the
nodes are arranged to form a tree, but this is not a requirement of the format.

Node names containing periods, commas, colons or parentheses can confuse Info readers.
If it is necessary to refer to a node whose name contains any of these, the <nodename> should
be surrounded by a pair of DEL characters (‘CTRL-?’, character number 127). makeinfo adds
these characters when needed in the default case. Note that not all Info readers recognize
this syntax. See [Info Node Names Constraints], page 29.

The <general text> of the node can include the special constructs described next.

F.7 Info Format: Menu

Conventionally menus appear at the end of nodes, but the Info format places no restrictions
on their location.

<menu> =

* Menu:

(<menu entry> | <menu comment>)*

The parts of a <menu entry> are also described in Section 3.9.4 [Menu Parts], page 36.
They have the same syntax as cross-references, with a leading ‘*’ instead of ‘* (N|n)ote’
(see Section F.10 [Info Format Cross Reference], page 288). Indices extend the menu format
to specify the destination line; see Section F.9 [Info Format Printindex], page 287.

A <menu comment> is any line not beginning with ‘*’ that appears either at the beginning
of the menu or is separated from a menu entry by one or more blank lines. These comments
are intended to be displayed as part of the menu, as-is (see Section 3.9.1 [Writing a Menu],
page 34).

F.8 Info Format: Image

The @image command results in the following special directive within the Info file (see
Section 9.2 [Images], page 86):

<image> =

Appendix F: Info Format Specification 287

^@^H[image src="<image file>"

(text="<txt file contents>")?

(alt="<alt text>")?

^@^H]

The line breaks and indentation in this description are editorial; the whitespace between
the different parts of the directive in Info files is arbitrary.

In the strings <image file>, <txt file contents> and <alt text>, ‘"’ is quoted as
‘\"’ and ‘\’ is quoted as ‘\\’. The txt and alt specifications are optional.

The alt value serves the same purpose as in HTML: A prose description of the image.
In text-only displays or speech systems, for example, the alt value may be used instead of
displaying the (typically graphical) <image file>.

The <txt file contents>, if present, should be taken as an ASCII representation of
the image, for possible use on a text-only display.

The format does not prescribe the choice between displaying the <image file>, the
<alt text> or the <txt file contents>.

F.9 Info Format: Printindex

An index in Info format is a kind of menu, with an additional directive at the beginning to
mark it as an index menu.

<printindex> =

^@^H[index^@^H]

* Menu:

<index entry>*

The <index entry> items are similar to normal menu entries, but the free-format
description is replaced by the line number of where the entries occurs in the text:

<index entry> =

* <entry text>: <node-spec>. <line-spec>

<line-spec> =

<lparen>line <lineno><rparen>

The initial part, ‘<entry text>: <entry node>.’, should be on a single line. The <entry
text> is the index term.

Even though <entry text> is followed by a colon, it may itself contain colons, so Info
readers should try to include as much of the line as possible in the <entry text>. (However,
<entry text> may not contain the DEL characters that may occur in <node-spec>.)

<lineno> is an unsigned integer, given relative to the start of the <entry node>. An
optional line break may occur before ‘<line-spec>’.

Here is an example:

^@^H[index^@^H]

* Menu:

* thunder: Weather Phenomena. (line 5)

Appendix F: Info Format Specification 288

This means that an index entry for ‘thunder’ appears at line 5 of the node ‘Weather
Phenomena’.

F.10 Info Format: Cross-reference

A general cross-reference in Info format has one of the following two forms:

<cross-reference> =

* (N|n)ote <id>::

| * (N|n)ote <label>:<id>(.|,)

<id> = (<lparen><infofile><rparen>)?<node-spec>?

<label> = <label text> | <label text>

No space should occur between the ‘*’ character and the following ‘N’ or ‘n’. ‘*Note’
should be used at the start of a sentence, otherwise ‘*note’ should be used. (Some Info
readers, such as the one in Emacs, can display ‘*Note’ and ‘*note’ as ‘See’ and ‘see’
respectively.) In both cases, <label text> is descriptive text.

In both forms the <id> refers to a node or anchor, in the same way as a reference in
the node information line does (see Section F.6 [Info Format Regular Nodes], page 285).
The optional parenthesized ‘<infofile>’ is the name of the manual being referenced, and
<node-spec> gives the node or anchor within that manual.

The second form has a descriptive label. A cross-reference in this form should usually be
terminated with a comma or period, to make it feasible to find the end of the <id>.

If <label> contains a colon character (:), it should be surrounded with a pair of
characters. Likewise, quoting characters may be used for the node name if it contains
problematic characters; then a terminating comma or period is not needed. As stated earlier,
this quoting mechanism is not supported in all Info-reading programs.

The format does not prescribe how to find other manuals to resolve such references.

Here are some examples:

*note GNU Free Documentation License::

*note Tag table: Info Format Tag Table, for details.

*Note Overview: (make)Top.

*Note ^?:^?: (bash)Bourne Shell Builtins.

*Note alloca.h: (gnulib)^?alloca.h^?.

The first shows a reference to a node in the current manual using the short form.

The second also refers to a node in the current manual, namely ‘Info Format Tag Table’;
the ‘Tag table’ before the ‘:’ is only a label on this particular reference, and the ‘for
details.’ is text belonging to the sentence, not part of the reference.

The third example refers to the node ‘Top’ in another manual, namely ‘make’, with
‘Overview’ being the label for this cross-reference.

The fourth example shows a colon character being quoted in a label, and the fifth example
shows a period being quoted in a node name.

See Chapter 5 [Cross References], page 44.

289

Appendix G GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The “Document”, below, refers
to any such manual or work. Any member of the public is a licensee, and is addressed
as “you”. You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

https://fsf.org/

Appendix G: GNU Free Documentation License 290

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a
variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to
the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any
other implication that these Warranty Disclaimers may have is void and has no effect
on the meaning of this License.

2. VERBATIM COPYING

Appendix G: GNU Free Documentation License 291

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions in
section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix G: GNU Free Documentation License 292

be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section Entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix G: GNU Free Documentation License 293

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you follow
the rules of this License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix G: GNU Free Documentation License 294

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you also
include the original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation and the
original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

Appendix G: GNU Free Documentation License 295

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by the Free Software
Foundation. If the Document specifies that a proxy can decide which future versions
of this License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities for
anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place
of business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or
invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

https://www.gnu.org/licenses/

Appendix G: GNU Free Documentation License 296

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ``GNU

Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

297

Command and Variable Index

This is an alphabetical list of all the @-commands, assorted Emacs Lisp functions, and
several variables. To make the list easier to use, the commands are listed without their
preceding ‘@’.

!
! (end of sentence) . 102

"
" (umlaut accent) . 104

&
& (literal ‘&’) . 99

’
' (acute accent) . 104

*
* (force line break) . 114

,
, (cedilla accent) . 104

–
- (discretionary hyphen) . 115

.

. (end of sentence) . 102

/
/ (allow line break) . 114

:
: (suppress end-of-sentence space) 101

=
= (macron accent) . 104

?
? (end of sentence) . 102

^
^ (circumflex accent) . 104

‘
` (grave accent) . 104

@
@ (literal ‘@’) . 98

\
\ (literal ‘\’ in math) . 99

{
{ (literal ‘{’) . 98

}
} (literal ‘}’) . 98

~
~ (tilde accent) . 104

Command and Variable Index 298

A
aa . 104
AA . 104
abbr . 61
acronym . 62
ae . 104
AE . 104
afivepaper . 281
afourlatex . 281
afourpaper . 281
afourwide . 281
alias . 150
allowcodebreaks . 115
ampchar . 99
anchor . 50
appendix . 40
appendixsec . 41
appendixsection . 41
appendixsubsec . 41
appendixsubsubsec . 42
apply . 129
arrow . 112
asis . 80
atchar . 98
author . 19

B
b (bold font) . 64
\backslash . 99
backslashchar . 99
bsixpaper . 281
bullet . 108
bye . 26

C
c . 10
caption . 85
cartouche . 74
center . 20
centerchap . 40
chapheading . 40
chapter . 39
cindex . 91
cite . 53
clear . 138
click . 112
clicksequence . 112
clickstyle . 112
code . 56
codequotebacktick . 100
codequoteundirected . 100
columnfractions . 82
comma . 98
command . 61
comment . 10
complete_tree_nodes_menus 189

complete_tree_nodes_missing_menu 189
contents . 22
copying . 17
copyright . 107
cpindex . 91

D
defblock . 127
defcodeindex . 96
defcv . 125
defcvx . 120
deffn . 120
deffnx . 120
defindex . 96
definfoenclose . 152
defivar . 126
defivarx . 120
defline . 127
defmac . 121
defmacx . 120
defmethod . 127
defmethodx . 120
defop . 126
defopt . 124
defoptx . 120
defopx . 120
defspec . 121
defspecx . 120
deftp . 124
deftpx . 120
deftypecv . 125
deftypecvx . 120
deftypefn . 121
deftypefnnewline . 123
deftypefnx . 120
deftypefun . 123
deftypefunx . 120
deftypeivar . 126
deftypeivarx . 120
deftypeline . 127
deftypemethod . 127
deftypemethodx . 120
deftypeop . 127
deftypeopx . 120
deftypevar . 124
deftypevarx . 120
deftypevr . 124
deftypevrx . 120
defun . 121
defunx . 120
defvar . 123
defvarx . 120
defvr . 123
defvrx . 120
DEL (comment character) . 10
detailmenu . 23
dfn . 61

Command and Variable Index 299

dh . 104
DH . 104
dircategory . 16
direntry . 198
display . 70
displaymath . 106
dmn . 103
docbook . 136
documentdescription . 207
documentencoding . 132
documentlanguage . 131
dotaccent . 104
dotless . 104
dots . 107

E
email . 63
\emergencystretch . 163
emph . 63
end . 217
enddots . 107
enumerate . 78
env . 60
equiv . 111
error . 110
errormsg . 135
errormsg, and line numbers in TEX 154
euro . 108
evenfooting . 278
evenfootingmarks . 279
evenheading . 278
evenheadingmarks . 279
everyfooting . 278
everyfootingmarks . 279
everyheading . 278
everyheadingmarks . 279
example . 68
exampleindent . 280
exclamdown . 104
exdent . 71
expansion . 109

F
file . 60
fill_gaps_in_sectioning . 189
finalout . 163
findex . 91
firstparagraphindent . 280
float . 84
flushleft . 71
flushright . 71
fnindex . 91
fn-name . 119
fonttextsize . 64
foo . 100
foobar . 119, 122

footnote . 88
footnotestyle . 90
format . 70
forward-word . 118
frenchspacing . 102
ftable . 81

G
\gdef within @tex . 136
geq . 108
\globaldefs within @tex . 136
group . 116
guillemetleft . 105
guillemetright . 105
guillemotleft . 105
guillemotright . 105
guilsinglleft . 105
guilsinglright . 105

H
H (Hungarian umlaut accent) 104
hashchar . 99
hbox . 163
heading . 41
headings . 276
headitem . 82
headitemfont . 82
html . 136
hyphenation . 115

I
i (italic font) . 64
ifclear . 140
ifcommanddefined . 141
ifcommandnotdefined . 141
ifdocbook . 134
ifhtml . 134
ifinfo . 134
iflatex . 134
ifnotdocbook . 135
ifnothtml . 135
ifnotinfo . 135
ifnotlatex . 135
ifnotplaintext . 135
ifnottex . 135
ifnotxml . 135
ifplaintext . 134
ifset . 139
iftex . 134
ifxml . 134
ignore . 10
image . 86
include . 155
indent . 73
indentedblock . 68

Command and Variable Index 300

index . 120
indicateurl . 63
inforef . 51
Info-validate . 272
inlinefmt . 137
inlinefmtifelse . 137
inlineifclear . 140
inlineifset . 140
inlineraw . 137
\input (raw TEX startup) . 10
insert_nodes_for_sectioning_commands 189
insertcopying . 18
isearch-backward . 120
isearch-forward . 120
item in @itemize . 77
item in @multitable . 82
item in @table . 80
itemize . 77
itemx . 81

K
kbd . 57
kbdinputstyle . 57
key . 58
kindex . 91
kyindex . 91

L
l . 104
latex . 136
LaTeX . 107
lbracechar . 98
leq . 108
linemacro . 151
link . 51
\linkcolor . 54
lisp . 70
listoffloats . 86
lowersections . 43
L . 104

M
macro . 144
\mag (raw TEX magnification) 282
majorheading . 40
makeinfo-buffer . 261
makeinfo-kill-job . 262
makeinfo-recenter-output-buffer 262
makeinfo-region . 261
math . 106
\mathopsup . 107
menu . 34
microtype . 282
minus . 108
move_index_entries_after_items 189

multitable . 81

N
need . 117
<newline> . 101
next-error . 261
node . 27
nodedescription . 33
nodedescriptionblock . 33
noindent . 73
novalidate . 160

O
o . 104
occur . 255
occur-mode-goto-occurrence 254
oddfooting . 278
oddfootingmarks . 279
oddheading . 278
oddheadingmarks . 279
oe . 104
OE . 104
ogonek . 104
option . 61
ordf . 104
ordm . 104
O . 104

P
page . 116
page, within @titlepage . 19
pagesizes . 281
paragraphindent . 280
part . 42
pgindex . 91
phoo . 152
pindex . 91
point . 111
pounds . 108
print . 110
printindex . 94
process . 123
push . 122
pxref . 50

Q
questiondown . 104
quotation . 67
quotedblbase . 105
quotedblleft . 105
quotedblright . 105
quoteleft . 105
quoteright . 105
quotesinglbase . 105

Command and Variable Index 301

R
r (roman font) . 65
raggedright . 72
raisesections . 43
rbracechar . 98
ref . 49
@refill . 241
regenerate_master_menu . 190
registeredsymbol . 107
relate_index_entries_to_table_entries 190
result . 109
ringaccent . 104
rmacro . 145

S
samp . 58
sansserif . 65
sc . 64
section . 40
seealso . 93
seeentry . 93
set . 138
setchapternewpage . 275
@setcontentsaftertitlepage 241
setfilename . 13
@setshortcontentsaftertitlepage 241
settitle . 14
shortcaption . 85
shortcontents . 22
shorttitlepage . 19
simple_menu . 190
slanted . 65
smallbook . 281
smalldisplay . 75
smallexample . 75
smallformat . 75
smallindentedblock . 75
smalllisp . 75
smallquotation . 75
sortas . 92
sp . 116
sp (titlepage line spacing) . 20
<space> . 101
ss . 104
strong . 63
sub . 106
subentry . 93
subheading . 41
subsection . 41
subsubheading . 42
subsubsection . 42
subtitle . 19
summarycontents . 22
sup . 106
syncodeindex . 95
synindex . 96

T
t (typewriter font) . 65
tab . 82
<tab> . 101
table . 79
tex . 136
texinfo-all-menus-update 258
texinfo-every-node-update 257
texinfo-format-buffer . 262
texinfo-format-region . 262
texinfo-indent-menu-description 261
texinfo-insert-braces . 253
texinfo-insert-@code . 252
texinfo-insert-@dfn . 252
texinfo-insert-dwim-@ref 252
texinfo-insert-@end . 252
texinfo-insert-@example . 253
texinfo-insert-@item . 252
texinfo-insert-@kbd . 252
texinfo-insert-@node . 252
texinfo-insert-node-lines 260
texinfo-insert-@noindent 252
texinfo-insert-@samp . 252
texinfo-insert-@table . 252
texinfo-insert-@var . 252
texinfo-make-menu . 257
texinfo-master-menu . 257
texinfo-multiple-files-update 259
texinfo-sequential-node-update 261
texinfo-show-structure . 254
texinfo-start-menu-description 253
texinfo-tex-buffer . 263
texinfo-update-node . 257
textdegree . 108
TeX . 107
th . 104
thischapter . 279
thischaptername . 278
thischapternum . 278
thisfile . 279
thispage . 278
thissection . 278
thissectionname . 278
thissectionnum . 278
thistitle . 279
TH . 104
tie . 116
tieaccent . 104
tindex . 91
title . 19
titlefont . 20
titlepage . 18
today . 279
top . 31
tpindex . 91

Command and Variable Index 302

U

u (breve accent) . 104

ubaraccent . 104

udotaccent . 104

unmacro . 145

unnumbered . 40

unnumberedsec . 41

unnumberedsubsec . 41

unnumberedsubsubsec . 42

up-list . 253

uref . 52

urefbreakstyle . 53

\urefurlonlylinktrue . 53

url . 51

\urlcolor . 54

U . 112

V
v (caron) . 104
value . 138
var . 59
verb . 59
verbatim . 69
verbatiminclude . 156
vindex . 91
vrindex . 91
vskip TEX vertical skip . 21
vtable . 81

W
w . 115

X
xml . 136
xref . 49
xrefautomaticsectiontitle 47

303

General Index

!
¡ . 104

"
� (double low-9 quotation mark) 105
" (undirected double quote character) 105

#
‘#line’ directive . 153

not processing with TEX 153
syntax details . 154

$
$Id expansion, preventing . 116

&
‘&#xhex;’, output from @U . 112

’
’ . 105
’’ . 105

(
(dir) as Up node of Top node 30

,

 (single low-9 quotation mark) 105

–
- (in image alt string) . 87, 115

<
� . 105
� . 105

>
� . 105
� . 105

?
¿ . 104

, breakpoint within @code . 115

‘
` . 105
`` . 105

@
‘@’ as continuation in definition commands 119

8
8-bit characters, in HTML cross-references 213

A
a . 104
A4 paper, printing on . 281
A5 paper, printing on . 281
å . 104
Å . 104
Abbreviations for keys . 58
Abbreviations, tagging . 61
Abstract of document . 207
Abstract syntax tree representation of documents . 7
Accents, inserting . 103
accesskey,

customization variable for 179
in HTML output of menus 35
in HTML output of nodes 31

<acknowledgements> DocBook tag 40
Acronyms, tagging . 62
Acute accent . 104
Adding a new Info file . 196
Additional output formats . 5
--add-once, for install-info 199
Advanced indexing . 93
Advice on writing entries . 93
æ . 104
Æ . 104
after, value for @urefbreakstyle 53
AFTER_BODY_OPEN . 175
AFTER_SHORT_TOC_LINES . 175
AFTER_TOC_LINES . 175
Aliases, command . 150
--align=column, for install-info 199
Allow line break . 114
All-permissive copying license 249
Alphabetical @-command list 218
Alt attribute for images . 87
Ampersand, inserting . 99
Anchors . 50

General Index 304

Angle quotation marks . 105
Another Info directory . 197
--append-new-sections, for install-info 199
Archive::Zip, for EPUB file output 208
Arguments, repeated and optional 119
ASCII text output with --plaintext 169
ASCII, source document portability using 112
ASCII_DASHES_AND_QUOTES . 183
ASCII_GLYPH . 183
ASCII_PUNCTUATION . 183
Aspect ratio of images . 87
@-commands . 9

customization variables for 172
in node names . 29
list of . 218
syntax . 217

At sign, inserting . 98
Auk, bird species . 105
AUTO_MENU_DESCRIPTION_ALIGN_COLUMN 183
AUTO_MENU_MAX_WIDTH . 183
automake, and version info . 247
Automatic pointer creation with texi2any 27
Automatic quoting of commas for some macros . 146
Automatically insert nodes, menus 256
Auxiliary files, omitting . 160
AVOID_MENU_REDUNDANCY . 174

B
B5 paper, printing on . 281
Back-end output formats . 3
Backslash in macros . 144
Backslash, and macros . 145
Backslash, in macro arguments 146
Backslash, inserting . 99
Backtick . 100
Badly referenced nodes . 272
BASEFILENAME_LENGTH . 175
Bastard title page . 19
Batch formatting for Info . 274
Beebe, Nelson . 4
before, value for @urefbreakstyle 53
BEFORE_SHORT_TOC_LINES . 175
BEFORE_TOC_LINES . 175
Beginning line of a Texinfo file 13
Berry, Karl . 6
Big points . 88
BIG_RULE . 175
Black rectangle in hardcopy 163
Blank lines . 116
<blockquote> DocBook tag . 67
Body of a macro . 144
<body> text, customizing . 175
BODYTEXT . 175
Bold font . 64
Bolio . 6
Book characteristics, printed . 5
Book, printing small . 281

border-pattern of Window 125, 126
BoTEX . 6
Box with rounded corners . 74
Box, ugly black in hardcopy 163
Brace-delimited conditional text 137
Brace-delimited flag conditionals 140
Braces and argument syntax 218
Braces, in index entries . 161
Braces, in macro arguments 146
Braces, inserting . 98
Braces, when to use . 9
Breakpoints within URLs . 53
Breaks in a line . 114
Breaks, within @code . 115
Breve accent . 104
Buffer formatting and printing 263
Bugs, reporting . 2
Bzipped dir files, reading . 199

C
-c var=value . 169
--calign=column, for install-info 199
Capitalization of index entries 93
Captions, for floats . 85
Caron . 104
Cascading Style Sheets, and HTML output 206
Case in node name . 30
Case, not altering in @code . 56
CASE_INSENSITIVE_FILENAMES 175
Catching errors with Info formatting 269
Catching errors with TEX formatting 270
Catching mistakes . 269
Catcode for comments in TEX 10
Categories, choosing . 16
Category codes, of plain TEX 136
<caution> DocBook tag . 67
Caveats for macro usage . 147
Cedilla accent . 104
Centimeters . 88
Chapter structuring . 38
<chapter> DocBook tag . 40
CHAPTER_HEADER_LEVEL . 175
Chapters, formatting one at a time 160
Character set, declaring . 132
Characteristics, printed books or manuals 5
Characters, basic input . 9
Characters, invalid in node name 29
‘@charset’ specification, in CSS files 206
Chassell, Robert J. 6
Check accent . 104
CHECK_HTMLXREF . 175
CHECK_MISSING_MENU_ENTRY 183
CHECK_NORMAL_MENU_STRUCTURE 184
Checking for badly referenced nodes 272
Checking for Texinfo commands 141
Checklist for bug reports . 2
Ciceros . 88

General Index 305

Circumflex accent . 104
CLASS_BEGIN_USEPACKAGE . 182
Click sequences . 112
CLOSE_DOUBLE_QUOTE_SYMBOL 184
CLOSE_QUOTE_SYMBOL . 184
Closing punctuation, and sentence ending 102
CM-Super fonts . 105

for LATEX . 282
installing . 162

Code point of Unicode character, inserting by . 112
code, value for @kbdinputstyle 57
Collapsing whitespace around continuations . . . 119
Colon in node name . 29
Colon, last in INFOPATH . 197
<colophon> DocBook tag . 40
Colored links, in PDF output 54
Column widths, defining for multitables 82
Combining indices . 95
Comma after cross-reference 45
Comma in node name . 29
Comma, in macro arguments 145
Comma, inserting . 98
Command aliases . 150
Command definitions . 120
Command names, indicating 61
Command syntax . 217
--command, for texi2dvi . 158
COMMAND_LINE_ENCODING . 184
Command-line options of texi2html 194
Commands in node names . 29
Commands to insert special characters 98
Commands using raw TEX . 136
Commands, inserting them . 252
Commands, testing for Texinfo 141
--commands-in-node-names 164
Comments . 10
Comments, in CSS files . 207
compatibility, with texi2html 188
Compile command for formatting 265
COMPLEX_FORMAT_IN_TABLE . 175
Compressed dir files, reading 199
Computer Modern fonts . 133
Conditional commands, inline 137
Conditionally visible text . 134
Conditionals, nested . 142
Conditions for copying Texinfo 1
--conf-dir=dir . 165
Configuration, for HTML cross-manual

references . 214
Cons, Lionel . 7, 194
Container directory for EPUB 208
Contents, after title page . 241
Contents, table of . 22
CONTENTS_OUTPUT_LOCATION 175
Contents-like outline of file structure 254
Contexts, of @-commands . 240
Continuation lines in definition commands 119
Control keys, specifying . 58

Controlling line breaks . 114
Conventions for writing definitions 128
Conventions, syntactic . 9
CONVERT_TO_LATEX_IN_MATH 176
COPIABLE_LINKS . 176
Copying conditions . 1
Copying permissions . 16
Copying text, including . 18
Copyright holder for FSF works 17
Copyright page . 21
Copyright symbol . 107
Copyright word, always in English 17
Correcting mistakes . 269
Country codes . 131
cp (concept) index . 91
CPP_LINE_DIRECTIVES . 184
Create nodes, menus automatically 256
Creating an unsplit file . 273
Creating index entries . 92
Creating pointers with texi2any 27
Critical editions . 89
Cross-reference configuration, for HTML 214
Cross-reference parts . 44
Cross-reference targets, arbitrary 50
Cross-references . 44
Cross-references using @inforef 51
Cross-references using @link 51
Cross-references using @pxref 50
Cross-references using @ref . 49
Cross-references using @xref 49
Cross-references, in HTML output 209
Cross-references, in Info format 288
.cshrc initialization file . 162
CSS, and HTML output . 206
--css-include . 165
--css-ref . 165
CTRL-l . 9
Custom page sizes . 281
Customization variables for @-commands 172
Customization variables for options 173
Customize Emacs package

(Development/Docs/Texinfo) 265
Customizing of TEX for Texinfo 162

D
-D var . 165
Dash, breakpoint within @code 115
Dashes in source . 9
DATE_IN_HEADER . 176
--debug, for install-info . 199
debugging document, with tree representation . 174
Debugging the Texinfo structure 269
Debugging with Info formatting 269
Debugging with TEX formatting 270
DEBUG . 184
<dedication> DocBook tag . 40
DEF_TABLE . 176

General Index 306

Default font . 65
DEFAULT_RULE . 176
Defining indexing entries . 92
Defining macros . 144
Defining new indices . 96
Defining new Texinfo commands 144
Definition command headings, continuing 119
Definition commands . 118
Definition conventions . 128
Definition lists, typesetting . 79
Definition of Info format . 283
Definition template . 118
Definitions grouped together 120
Degree symbol . 108
--delete, for install-info 199
Delimiter character, for verbatim 59
Depth of text area . 281
Description for menu, start . 253
Description of document . 207
--description=text, for install-info 200
Detailed menu . 23
Details of macro usage . 147
detexinfo . 174
Didôt points . 88
Different cross-reference commands 44
Dimension formatting . 103
Dimensions and image sizes . 87
Dir categories, choosing . 16
dir directory for Info installation 196
dir file listing . 196
dir file, creating your own . 197
dir files and Info directories 197
Dir files, compressed . 199
dir, created by install-info 199
Direct formatting of Info files 268
--dir-file=name, for install-info 200
--disable-encoding . 165
Display formatting . 70
Displayed equation, in plain TEX 136
Displayed equations . 106
distinct, value for @kbdinputstyle 57
Distorting images . 87
DO_ABOUT . 176
DOC_ENCODING_FOR_INPUT_FILE_NAME 184
DOC_ENCODING_FOR_OUTPUT_FILE_NAME 184
--docbook . 165
DocBook and prefatory sections 40
DocBook output, overview . 4
DocBook, including raw . 136
DOCTYPE . 185
Document description . 207
Document input encoding . 132
Document language, declaring 131
Document permissions . 16
Document strings, internationalization of 190
Document strings, translation of 131
Document structure, of Texinfo 31
Document title, specifying . 14

--document-language . 165
documentlanguage customization variable 190
Dot accent . 104
Dotless i, j . 104
Dots, inserting . 107
Double angle quotation marks 105
Double guillemets . 105
Double left-pointing angle quotation mark 105
Double low-9 quotation mark 105
Double quotation marks . 105
Double right-pointing angle quotation mark . . . 105
Double structure, of Texinfo documents 31
Double-colon menu entries . 37
--dry-run, for install-info 200
DTD, for Texinfo XML . 4
Dumas, Patrice . 7, 209
DUMP_TEXI . 185
DUMP_TREE . 185
--dvi . 165
DVI file . 159
DVI output, overview . 3
DVI, output in . 157
--dvipdf . 165
--dvipdf, for texi2dvi . 158
dvipdfmx . 158
dvips . 158
dvips (program) . 3
ð . 104
Ð . 104

E
-e limit . 165
-E file . 167
EC fonts . 105
EC fonts, installing . 162
Ellipsis, inserting . 107
Em dash, compared to minus sign 108
Em dash, producing . 9
Emacs . 251
Emacs shell, format, print from 157
Emphasizing text . 63
Emphasizing text, font for . 63
En dash, producing . 9
enable . 124
ENABLE_ENCODING . 165
--enable-encoding . 165
Encoding,

input file names . 186
output file names . 187

Encoding, declaring . 132
‘end’ node footnote style . 89
End of header line . 15
END_USEPACKAGE . 182
Ending a Sentence . 102
Ending a Texinfo file . 26
Entity reference in HTML et al. 112
Entries for an index . 92

General Index 307

Entries, making index . 93
--entry=text, for install-info 200
Enumeration . 78
Environment indentation . 280
Environment variable INFOPATH 197
Environment variable TEXINFO_OUTPUT_FORMAT . 170
Environment variable TEXINPUTS 162
eps image format . 86
epsf.tex . 88
epsf.tex, installing . 162
--epub3 . 165
EPUB 3 output, overview . 3
EPUB Container directory . 208
EPUB output file . 208
EPUB, generating . 208
EPUB_CREATE_CONTAINER_FILE 185

avoiding Archive::Zip dependency 208
EPUB_KEEP_CONTAINER_FOLDER 185
Equation, displayed, in plain TEX 136
Equations, displayed . 106
Equivalence, indicating . 111
Error message, indicating . 110
Error messages, line numbers in 153
ERROR_LIMIT . 165
--error-limit=limit . 165
Errors, parsing . 261
Escaping to HTML . 205
Es-zet . 104
etex . 159
Eth . 104
Euro font . 108
Euro font, installing . 162
Euro symbol, and encodings 132
Euro symbol, producing . 108
European A4 paper . 281
European Computer Modern fonts 105

installing . 162
Evaluation glyph . 109
Example indentation . 280
Example menu . 35
example, value for @kbdinputstyle 57
Examples in smaller fonts . 75
Examples, formatting them . 68
Examples, glyphs for . 109
Expanding macros . 145
Expansion of 8-bit characters in HTML

cross-references . 213
Expansion of macros, contexts for 147
Expansion, indicating . 109
expansion, of node names in HTML

cross-references . 211
Expressions in a program, indicating 56
EXTENSION . 185
External macro processors . 153
EXTERNAL_CROSSREF_EXTENSION 176
EXTERNAL_CROSSREF_SPLIT . 176
EXTERNAL_DIR . 176
EXTRA_HEAD . 176

F
-f width . 165
Family names, in all capitals 62
Features of Texinfo, adapting to 141
Feminine ordinal . 104
feymr10 . 108

installing . 162
File ending . 26
File name collision . 14
file recorder for TEX . 159
File sectioning structure, showing 254
--fill-column=width . 165
FILLCOLUMN . 165
filll TEX dimension . 21
-F . 166
Final output . 162
Finding badly referenced nodes 272
Fine-tuning, and hyphenation 115
First line of a Texinfo file . 13
First node . 30
First paragraph, suppressing indentation of 280
Fixed-width font . 65
Flag conditionals, brace-delimited 140
Float environment . 84
Floating accents, inserting . 103
Floating, not yet implemented 84
Floats . 84

list of . 86
making unnumbered . 84
numbering of . 85

Flooding . 50
fn (function) index . 91
Font for multitable heading rows 82
Font size, reducing . 64
Fonts for indices . 96
Fonts for printing . 64
Footings . 276
Footnote style,

‘end’ . 89
‘separate’ . 89

FOOTNOTE_END_HEADER_LEVEL 176
FOOTNOTE_SEPARATE_HEADER_LEVEL 176
Footnotes . 88
footnotestyle . 166
--footnote-style=style . 166
--force . 166
Force line break . 114
FORCE . 166
Forcing indentation . 73
Forcing line and page breaks 114
Form feed character . 9
Format a dimension . 103
Format and print hardcopy 157
Format and print in Texinfo mode 263
Format with the compile command 265
Format, print from Emacs shell 157
FORMAT_MENU . 185
Formats for images . 86

General Index 308

Formatting commands . 9
Formatting examples . 68
Formatting for Info . 261
Formatting headings and footings 276
Formatting partial documents 160
Formatting requirements . 10
Formatting with tex and texindex 159
Formulas, mathematical . 106
Four- and five argument forms of cross-references .47
Fox, Brian . 6
FRAMES . 177
FRAMESET_DOCTYPE . 177
Free Documentation License, including entire . . 247
Free software . 1
French quotation marks . 105
French spacing . 102
Frequently used commands, inserting 252
Frontmatter, text in . 24
Full texts, GNU . 247
Function definitions . 120
Functions, in typed languages 121
Future of Texinfo implementations 8

G
General syntactic conventions 9
Generating EPUB . 208
Generating HTML . 205
Generating menus with indices 94
Generating page headings . 22
Generating plain text files with --no-headers . 167
Generating plain text files with --plaintext . . 169
German quotation marks . 105
German S . 104
Global Document Commands 275
Globbing . 160
Glyphs for programming . 109
Glyphs for text . 107
GNU Emacs . 251
GNU Emacs shell, format, print from 157
GNU Free Documentation License, including

entire . 247
GNU sample texts . 247
Going to other Info files’ nodes 37
Grave accent. 104

standalone . 100
vs. left quote . 105

Group (hold text together vertically) 116
Grouping two definitions together 120
GUI click sequence . 112
Guillemets . 105
Guillemots . 105

H
-h . 166
Hacek accent . 104
Hardcopy, printing it . 157
Hash sign, inserting . 99
‘hbox’, overfull . 162
<head> HTML tag, and <link> 180
Header for Texinfo files . 12
Header of a Texinfo file . 13
HEADER_IN_TABLE . 177
HEADERS . 167
Heading row, in table . 82
Headings . 276
Headings, indentation after 280
Height of images . 87
Height of text area . 281
--help, for texi2any . 166
--help, for texindex . 200
help2man . 6
Hierarchical documents, and menus 35
HIGHLIGHT_SYNTAX . 185
HIGHLIGHT_SYNTAX_DEFAULT_LANGUAGE 185
Highlighting text . 55
Highlighting, customized . 152
Hints . 242
History of Texinfo . 6
Holder of copyright for FSF works 17
Holding text together vertically 116
href, producing HTML . 51
--html . 166
HTML cross-references . 209

8-bit character expansion 213
command expansion . 212
configuration . 214
link basics . 210
mismatch . 214
node name expansion . 211

HTML output, and encodings 132
HTML output, browser compatibility of 205
HTML output, overview . 3
HTML output, split . 206
HTML translation . 205
HTML, and CSS . 206
HTML, including raw . 136
HTML_MATH . 177
HTML_ROOT_ELEMENT_ATTRIBUTES 177
htmlxref.cnf . 214
HTMLXREF_FILE . 177
HTMLXREF_MODE . 177
http-equiv, and charset specification 132
Hungarian umlaut accent . 104
Hurricanes . 49
Hyphen, breakpoint within @code 115
Hyphen, compared to minus 108
Hyphenation patterns, language-dependent 131
Hyphenation, helping TEX do 115
Hyphenation, preventing . 116
Hyphens in source, two or three in a row 9

General Index 309

I
ı (dotless i) . 104
-I dir . 166
I18n, of document strings . 190
Icelandic . 104
ICONS . 177
If text conditionally visible . 134
--ifdocbook . 166
--ifhtml . 166
--ifinfo . 166
--iflatex . 166
--ifplaintext . 166
--iftex . 166
--ifxml . 166
IGNORE_REF_TO_TOP_NODE_UP 178
IGNORE_SPACE_AFTER_BRACED_COMMAND_NAME . . . 185
Ignored before @setfilename 13
Ignored text . 10
Image formats . 86
IMAGE_LINK_PREFIX . 177
Images . 86

alternate text for . 87
in Info format . 286
scaling . 87

Implementation, texi2any as reference 8
Implicit pointer creation with texi2any 27
‘@import’ specifications, in CSS files 207
<important> DocBook tag . 67
Inches . 88
@include file sample . 155
Include file sample . 155
Include files . 155
Include files requirements . 260
Include files, and section levels 43
Including a file verbatim . 156
Including permissions text . 18
Indentation undoing . 71
Indentation, forcing . 73
Indentation, omitting . 73
Indented text block . 68
Indenting environments . 280
Indenting paragraphs, control of 280
Indenting, suppressing of first paragraph 280
Index entries . 92
Index entries, advice on writing 93
Index entries, making . 93
Index file names . 159
Index font types . 92
index sorting . 92
INDEX_ENTRY_COLON . 177
INDEX_SPECIAL_CHARS_WARNING 186
Indexing table entries automatically 81
Indexing, advanced . 93
Indicating commands, definitions, etc. 55
Indicating evaluation . 109
Indices . 91
Indices, combining them . 95
Indices, defining new . 96

Indices, in Info format . 287
Indices, printing and menus . 94
Indices, sorting . 157
Indices, two letter names . 95
Indirect subfiles . 201
Indirect table, in Info format 284
--info . 167
Info batch formatting . 274
Info file name, choosing . 14
Info files . 4

installation . 196
listing a new . 196
making a tag table . 268
splitting manually . 268

Info format specification . 283
Info format, and menus . 36
Info formatting . 261
Info installed in another directory 197
Info nodes, in Info format . 285
Info output, and encoding . 132
Info output, overview . 3
Info validating a large file . 272
Info; other files’ nodes . 37
INFO_JS_DIR . 177
INFO_SPECIAL_CHARS_QUOTE 186
INFO_SPECIAL_CHARS_WARNING 186
--info-dir=dir, for install-info 200
--info-file=file, for install-info 200
INFOPATH . 197
--init-file=file . 167
Initialization file for TEX input 162
Inline conditionals . 137
INLINE_CSS_STYLE . 178
Input encoding, declaring . 132
‘\input’ source line ignored . 13
INPUT_FILE_NAME_ENCODING 186
Insert nodes, menus automatically 256
Inserting @ (literal ‘@’) . 98
Inserting # . 99
Inserting & . 99
Inserting accents . 103
Inserting dots . 107
Inserting ellipsis . 107
Inserting frequently used commands 252
Inserting indentation . 73
Inserting quotation marks . 104
Inserting quote characters . 100
Inserting space . 101
Inserting special characters and symbols 98
INSTALL file, generating . 169
install-info . 199
Installing an Info file . 196
Installing Info in another directory 197
Internal links, of HTML . 167
INTERNAL_LINKS . 167
--internal-links=file . 167
Internationalization . 131
Internationalization of document strings 190

General Index 310

Introduction to Texinfo . 2
Invalid characters in node names 29
Invoking macros . 145
Invoking nodes, including in dir file 199
Invoking pod2texi . 192
ISO 3166 country codes . 131
ISO 639-2 language codes . 131
Italic font . 64
--item=text, for install-info 200
Itemization . 77

J
ȷ (dotless j) . 104
jpeg image format . 86
JS_WEBLABELS . 178
JS_WEBLABELS_FILE . 178

K
--keep-old, for install-info 200
Keyboard input . 57
Keys, recommended names . 58
Keyword expansion, preventing 116
Keywords, indicating . 56
Knuth, Donald . 5
ky (keystroke) index . 91

L
ª . 104
L2H_CLEAN . 181
L2H_FILE . 181
L2H_HTML_VERSION . 181
L2H_L2H . 181
L2H_SKIP . 181
L2H_TMP . 181
lang, HTML attribute . 175
Language codes . 131
Language, declaring . 131
--language, for texi2dvi . 158
Larger or smaller pages . 282
--latex . 167
LATEX logo . 107
LaTeX output, overview . 4
LATEX, including raw . 136
LATEX, processing with texi2dvi 158
Left quotation marks . 105
Left-pointing angle quotation marks 105
Legal paper, printing on . 281
Length of file names . 14
Less cluttered menu entry . 37
libintl-perl Gettext implementation 190
Libre software . 1
License for all-permissive copying 249
License for verbatim copying 249
Limited scope of Texinfo . 2

Line breaks,
awkward . 114
controlling . 114
URLs . 53

Line breaks, preventing . 115
Line length, column widths as fraction of 82
Line macros . 151
Line numbers, in error messages 153
Line spacing . 116
<link> HTML tag, in <head> 180
� . 104
Links, coloring in PDF output 54
Lisp example . 70
Lisp examples in smaller fonts 75
List of @-commands . 218
List of floats . 86
Listing a new Info file . 196
Lists and tables, making . 76
Literate programming, with Texinfo and awk . . 161
Local variable section, in Info format 285
Local variables . 265
Local Variables section, for encoding 132
Locale, declaring . 131
LOCALE_ENCODING . 186
Location of menus . 36
Logos, TEX . 107
Longest nodes, finding . 188
Looking for badly referenced nodes 272
Lowering and raising sections 43
lpr (DVI print command) . 161
lpr-d, replacements on

MS-DOS/MS-Windows . 161
Lzip-compressed dir files, reading 199
LZMA-compressed dir files, reading 199

M
Macro definitions, programming-language 120
Macro definitions, Texinfo . 144
Macro details . 147
Macro expansion, contexts for 147
Macro expansion, indicating 109
Macro invocation . 145
Macro names, valid characters in 144
Macro processors, external . 153
MACRO_EXPAND . 167
--macro-expand=file . 167
Macron accent . 104
Macros . 144
Macros taking whole line as an argument 151
Macros, undefining . 145
Magnified printing . 282
Mailto link . 63
makeinfo . 164
makeinfo inside Emacs . 261
makeinfo options . 164
Making a printed manual . 157
Making a tag table manually 268

General Index 311

Making cross-references . 44
Making line and page breaks 114
Making lists and tables . 76
Man page output, not supported 6
Man page, reference to . 52
Manual characteristics, printed 5
Manual, referring to as a whole 48
Margins on page, not controllable 282
Marking text within a paragraph 55
Marking words and phrases . 55
Masculine ordinal . 104
Master menu . 23
Math output for HTML . 106
Mathematical expressions, inserting 106
MATHJAX_SCRIPT . 181
MATHJAX_SOURCE . 181
MAX_HEADER_LEVEL . 178
MAX_MACRO_CALL_NESTING . 186
--max-width=column, for install-info 200
Menu description, start . 253
Menu entries with two colons 37
Menu example . 35
Menu location . 36
Menu parts . 36
@menu parts . 36
Menu writing . 34
Menu, master . 23
MENU_ENTRY_COLON . 178
MENU_SYMBOL . 178
--menuentry=text, for install-info 200
Menus . 34
Menus generated with indices 94
Menus, in Info format . 286
Menus, omitting with --no-headers 167
Menus, omitting with --plaintext 169
MESSAGE_ENCODING . 186
Meta keys, specifying . 58
<meta> HTML tag, and charset specification . . 132
<meta> HTML tag, and document description . 207
META key . 58
Meta-syntactic chars for arguments 119
Methods, object-oriented . 126
Millimeters . 88
Mils, argument to @need . 117
Minimal requirements for formatting 10
Minimal Texinfo file (requirements) 10
Minus sign . 108
Mismatched HTML cross-reference source and

target . 214
Mistakes, catching . 269
Mode, using Texinfo . 251
monolithic manuals, for HTML cross-references . 215
MONOLITHIC . 178
Monospace font . 65
Multiple dashes in source . 9
Multiple spaces . 101
Multitable column widths . 82
Multitable rows . 82

N
--name=text, for install-info 200
Names for indices . 95
Names of index files . 159
Names of macros, valid characters of 144
Names recommended for keys 58
NASA, as acronym . 62
Navigation bar, in HTML output 205
Navigation footer . 180
Navigation links, omitting . 167
Navigation panel, bottom of page 180
Need space at page bottom 117
Nested footnotes . 89
Nesting conditionals . 142
New index defining . 96
New Info file, listing it in dir file 196
New Texinfo commands, defining 144
Newlines, avoiding in conditionals 137
NEWS file for Texinfo . 142
Next node of Top node . 30
NLS . 6
NO_CSS . 178
NO_CUSTOM_HTML_ATTRIBUTE 178
NO_NUMBER_FOOTNOTE_SYMBOL 179
NO_TOP_NODE_OUTPUT . 186
NO_USE_SETFILENAME . 187
NO_WARN . 168
Node line requirements . 29
@node line writing . 27
Node line writing . 27
node name expansion, in HTML

cross-references . 211
Node names must be unique 29
Node names, choosing . 28
Node names, invalid characters in 29
Node separators, omitting with --no-headers . 167
Node separators, omitting with --plaintext . . 169
Node, defined . 27
Node, ‘Top’ . 23
NODE_FILES . 167
NODE_NAME_IN_INDEX . 179
NODE_NAME_IN_MENU . 187
--node-files . 167
--node-files, and HTML cross-references 216
Nodes in other Info files . 37
Nodes, catching mistakes . 269
Nodes, checking for badly referenced 272
Nodes, deleting or renaming . 51
--no-headers . 167
--no-ifdocbook . 167
--no-ifhtml . 167
--no-ifinfo . 167
--no-iflatex . 167
--no-ifplaintext . 167
--no-iftex . 167
--no-ifxml . 167
--no-indent, for install-info 201
Non-breakable space, fixed . 115

General Index 312

Non-breakable space, variable 116
none, value for @urefbreakstyle 53
--no-node-files . 167
nonsplit Info file . 201
Nonsplit manuals, Info format of 283
--no-number-footnotes . 168
--no-number-sections . 168
--no-pointer-validate . 168
Normalization Form C, Unicode 214
--no-split . 170
Not ending a sentence . 101
<note> DocBook tag . 67
--no-validate . 168, 173
--no-warn . 168
Number sign, inserting . 99
NUMBER_FOOTNOTES . 168
NUMBER_SECTIONS . 168
Numbering of floats . 85
--number-sections . 168

O
ø . 104
-o file . 168
O’Dea, Brendan . 6
Object-oriented programming 125
Oblique font . 65
Obtaining TEX . 157
Occurrences, listing with @occur 255
Octotherp, inserting . 99
œ . 104
Ø . 104
Œ . 104
Ogonek diacritic . 104
Omitting indentation . 73
One-argument form of cross-references 45
OPEN_DOUBLE_QUOTE_SYMBOL 187
OPEN_QUOTE_SYMBOL . 187
‘\openout’ line in log file . 159
Optional and repeated arguments 119
Options for makeinfo . 164
Options for texi2any . 164
Options of texi2html . 194
Options, customization variables for 173
Ordinals, Romance . 104
Ordinary TEX commands, using 136
Orphans, preventing . 117
Other Info files’ nodes . 37
OUTFILE . 168
Outline of file structure, showing 254
Output document strings, internationalization

of . 190
output file name . 13
Output file splitting . 170
Output formats . 3
Output formats, supporting more 5
Output, in PDF . 157
Output, printed through texi2any 171

--output=file . 168
OUTPUT_CHARACTERS . 187
OUTPUT_ENCODING_NAME . 187
OUTPUT_FILE_NAME_ENCODING 187
--outputindent . 169
Outputting EPUB . 208
Outputting HTML . 205
Overfull ‘hboxes’ . 162
Overview of Texinfo . 2
Owner of copyright for FSF works 17

P
-p indent . 169
-P path . 169
PACKAGE . 188
PACKAGE_AND_VERSION . 188
PACKAGE_NAME . 188
PACKAGE_URL . 188
PACKAGE_VERSION . 188
Page breaks, awkward . 114
Page breaks, forcing . 116
Page delimiter in Texinfo mode 254
Page headings . 276
Page numbering . 276
Page sizes for books . 281
Page sizes, customized . 281
page-delimiter . 254
Pages, starting odd . 275
Paper size, A4 . 281
Paragraph indentation control 280
Paragraph, marking text within 55
paragraphindent . 173
--paragraph-indent=indent 169
Parameters to macros . 144
Parentheses in node name . 29
Parsing errors . 261
Part of file formatting and printing 263
Part pages . 42
Partial documents, formatting 160
Parts of a cross-reference . 44
Parts of a master menu . 23
Parts of a menu . 36
Patches, contributing . 3
PCL file, for printing . 161
--pdf . 169
pdf image inclusions . 86
--pdf, for texi2dvi . 157
PDF output . 157
PDF output of URLs . 53
PDF output, overview . 4
pdftex . 160
pdftex, and images . 86
pdftexi2dvi . 157
Period in node name . 29
Periods, inserting . 101
Perl extension modules (XS) 171
Perl format strings for translation 190

General Index 313

Perl Pod, converting to Texinfo 192
Permissions text, including . 18
Permissions, printed . 21
pg (program) index . 91
Picas . 88
Pictures, inserting . 86
Plain hyperlink . 51
Plain link . 51
Plain text output with --plaintext 169
Plain text output, overview . 3
Plain TEX . 136
--plaintext . 169
png image format . 86
Pod, converting to Texinfo . 192
pod2texi . 192
Point, indicating in a buffer 111
Pointer creation with texi2any 27
Pointer validation . 168

suppressing . 160
Points (dimension) . 87
PostScript output, overview . 3
Pounds symbol . 108
PRE_BODY_CLOSE . 179
Preamble . 14
Preamble, in Info format . 284
Predefined names for indices 95
Preface, etc., and DocBook . 40
<preface> DocBook tag . 40
PREFIX . 188
Preparing for TEX . 162
Prev node of Top node . 30
Preventing first paragraph indentation 280
Preventing line and page breaks 114
Print and format in Texinfo mode 263
Print, format from Emacs shell 157
Printed book and manual characteristics 5
Printed output, indicating . 110
Printed output, through texi2any 171
Printed permissions . 21
Printing a region or buffer . 263
Printing an index . 94
Printing cost, reducing . 64
Printing DVI files, on MS-DOS/MS-Windows . 161
Printing hardcopy . 157
Problems, catching . 269
.profile initialization file . 162
Program names, indicating . 61
PROGRAM_NAME_IN_ABOUT . 179
PROGRAM_NAME_IN_FOOTER . 179
Programming, glyphs for . 109
PROGRAM . 188
Pronunciation of Texinfo . 2
Prototype row, column widths defined by 82
--ps . 169
--ps, for texi2dvi . 158

Q
--quiet, for install-info . 201
Quotation characters (‘’), in source 104
Quotation marks, French . 105
Quotation marks, German . 105
Quotation marks, inserting . 104
Quotations . 67
Quotations in smaller fonts . 75
Quote characters, inserting . 100
Quoting, automatic for some macros 146

R
Ragged left, without filling . 71
Ragged right, with filling . 72
Ragged right, without filling 71
Raising and lowering sections 43
Raw formatter commands . 136
Raw HTML . 205
raw text output . 174
Recommended names for keys 58
Rectangle, black in hardcopy 163
Recursive macro invocations 145
Reducing font size . 64
Reference implementation . 8
Reference to @-commands . 218
References . 44
References using @inforef . 51
References using @pxref. 50
References using @ref . 49
References using @xref . 49
Referring to an entire manual 48
Referring to other Info files . 37
--regex=regex, for install-info 201
Region formatting and printing 263
Region printing in Texinfo mode 263
Registered symbol . 107
Regular expression, for ‘#line’ 154
Reid, Brian . 6
--remove, for install-info 201
--remove-exactly, for install-info 201
Repeated and optional arguments 119
Reporting bugs . 2
Required in Texinfo file . 10
Requirements for formatting 10
Requirements for include files 260
Requirements for updating commands 258
Reserved words, indicating . 56
Restrictions on node names . 29
Result of an expression . 109
Return type, own line for . 123
RGB color specification. 54
ridt.eps . 88
Right quotation marks . 105
Right-pointing angle quotation marks 105
Ring accent . 104
Robbins, Arnold . 161
Roman font . 65

General Index 314

Romance ordinals . 104
Rounded rectangles, around text 74
Rows, of a multitable . 82
Running an Info formatter . 261
Running macros . 145
Running makeinfo in Emacs 261
Running texi2any in Emacs 261

S
-s style . 166
Sample function definition . 129
Sample @include file . 155
Sample Texinfo file, no comments 11
Sample Texinfo files . 247
Sample texts, GNU . 247
Sans serif font . 65
Scaled points . 88
Scaling images . 87
Scribe . 6
Sea surges . 49
--section regex sec, for install-info 201
--section=sec, for install-info 201
SECTION_NAME_IN_TITLE . 179
Sectioning . 38
Sectioning structure of a file, showing 254
Sections, raising and lowering 43
Semantic markup . 2
Sentence ending punctuation 102
Sentence non-ending punctuation 101
Sentences, spacing after . 102
‘separate’ footnote style . 89
Sequence of clicks . 112
--set-customization-variable var=value 169
S-expressions, output format 174
SGML-tools output format . 5
Sharp sign (not), inserting . 99
Sharp S . 104
Shell formatting with tex and texindex 159
Shell printing, on MS-DOS/MS-Windows 161
Shell, format, print from . 157
Shell, running makeinfo in . 261
Shell, running texi2any in . 261
Short captions, for lists of floats 85
Short table of contents . 22
SHORT_TOC_LINK_TO_TOC . 179
SHOW_BUILTIN_CSS_RULES . 179
SHOW_TITLE . 179
Showing the sectioning structure of a file 254
Showing the structure of a file 254
Shrubbery . 139
--silent, for install-info 201
SIMPLE_MENU . 179
Single angle quotation marks 105
Single guillemets . 105
Single left-pointing angle quotation mark 105
Single low-9 quotation mark 105
Single quotation marks . 105

Single right-pointing angle quotation mark 105
Site-wide Texinfo configuration file 162
Size of printed book . 281
Slanted font . 65
Slanted typewriter font, for @kbd 57
Small book size . 281
Small caps font . 64
Small examples . 75
Small verbatim . 70
<small> tag . 64
Smaller fonts . 64
Smith, Gavin . 6
sort keys for index entries . 92
SORT_ELEMENT_COUNT . 188
SORT_ELEMENT_COUNT_WORDS 188
Sorting indices . 157
Sorting nodes by size . 188
Source file format . 2
Source files, characters used . 9
source-highlight . 209
Space, after sentences . 102
Space, inserting horizontal . 101
Space, inserting vertical . 116
Spaces in macros . 145
Spaces in node name . 30
Spaces, in menus . 35
Spacing, at ends of sentences 102
Spacing, in the middle of sentences 101
Spacing, inserting . 101
Special characters, inserting . 98
Special displays . 84
Special insertions . 98
Specification of Info format 283
Specifying index entries . 92
spell checking . 174
Spelling of Texinfo . 2
Split HTML output . 206
split Info file . 201
split manuals, for HTML cross-references 215
Split manuals, Info format of 283
--split=how . 170
SPLIT . 170
SPLIT_SIZE . 170
--split-size=num . 170
Splitting an Info file manually 268
Splitting of output files . 170
ß . 104
Stallman, Richard M. 6
Start of header line . 15
Starting chapters . 275
stripping Texinfo commands 174
Structure of a file, showing . 254
Structure, catching mistakes in 269
Structure, of Texinfo documents 31
Structuring of chapters . 38
SUBDIR . 168
Subscripts and superscripts, text 106
Subsection-like commands . 41

General Index 315

Subsub sectioning commands 42
Suggestions for Texinfo, making 2
Summary of document . 207
Suppressing first paragraph indentation 280
Suppressing indentation . 73
SVG images, used in DocBook 87
SXML output . 174
Syntactic conventions . 9
Syntactic tokens, indicating . 56
Syntax details, ‘#line’ . 154
Syntax tree representation of documents 7
Syntax, of @-commands . 217
Syntax, optional & repeated arguments 119
SystemLiteral . 184

T
T4H_LATEX_CONVERSION . 182
T4H_MATH_CONVERSION . 182
T4H_TEX_CONVERSION . 182
Table of contents . 22
Table of contents, after title page 241
Table of contents, for floats . 86
Tables and lists, making . 76
Tables with indexing . 81
Tables, making multi-column 81
Tables, making two-column . 79
Tag table . 201
Tag table, in Info format . 285
Tag table, making manually 268
Targets for cross-references, arbitrary 50
Template for a definition . 118
--test, for install-info . 201
Testing for Texinfo commands 141
Tests, of Texinfo language . 8
TEST . 188
TEX and ‘#line’ directives . 153
TEX commands, using ordinary 136
TEX index sorting . 157
TEX input initialization . 162
TEX logo . 107
TEX, how to obtain . 157
texi2any . 164
texi2any inside Emacs . 261
texi2any options . 164
texi2any, as reference implementation 8
texi2dvi (shell script) . 157
texi2html . 194
texi2oldapi.texi, for texi2html 195
texi2pdf (shell script) . 157
TEXI2DVI . 188
TEXI2HTML . 188
texi-elements-by-size . 188
texindex . 159
Texinfo commands, defining new 144
Texinfo commands, testing for 141
Texinfo document structure . 31
Texinfo file ending . 26

Texinfo file header . 12
Texinfo file minimum . 10
Texinfo file sectioning structure, showing 254
Texinfo history . 6
Texinfo language tests . 8
Texinfo mode . 251
Texinfo overview . 2
Texinfo parsers, discouraging more 6
Texinfo Preamble . 14
Texinfo printed book characteristics 5
Texinfo XML output, overview 4
Texinfo, and literate programming 161
Texinfo, introduction to . 2
texinfo.cnf installation . 162
texinfo.dtd . 4
texinfo.tex, installing . 162
texinfo_document Gettext domain 190
TEXINFO_DTD_VERSION . 188
TEXINFO_OUTPUT_FORMAT . 173
TEXINFO_XS . 171
TEXINFO_XS_PARSER . 171
TEXINPUTS . 162
texiwebjr . 161
Text width and height . 281
Text, conditionally visible . 134
Text, marking up . 55
Text::Unidecode . 190
TEXTCONTENT_COMMENT . 188
Textual glyphs . 107
þ . 104
<thead> HTML/DocBook tag 82
Thin space between number, dimension 103
Thorn . 104
Three-argument form of cross-references 46
Þ . 104
ti.twjr . 161
Tie-after accent . 104
Tied space . 116
Tilde accent . 104
time-stamp.el . 247
<tip> DocBook tag . 67
Tips . 242
Title page . 18

bastard . 19
<title> HTML tag . 14
TOC_LINKS . 179
Top node . 23
Top node example . 23
Top node is first . 30
TOP_FILE . 179
TOP_NODE_FILE_TARGET . 179
TOP_NODE_UP . 189
TOP_NODE_UP_URL . 179
tp (data type) index . 91
Translating strings in output documents 190
TRANSLITERATE_FILE_NAMES 170
--transliterate-file-names 170

General Index 316

Transliteration of 8-bit characters in HTML
cross-references . 213

Tree representation of documents 7
tree representation, for debugging 174
Tree structuring . 38
TREE_TRANSFORMATIONS . 189
Two ‘First’ Lines for @deffn 120
Two letter names for indices 95
Two named items for @table 81
Two part menu entry . 37
Two-argument form of cross-references 46
txi-cc.tex . 131
txicodequotebacktick . 100
txicodequoteundirected . 100
txicommandconditionals . 142
txidefnamenospace . 120
txiindexatsignignore . 92
txiindexbackslashignore . 92
txiindexhyphenignore . 92
txiindexlessthanignore . 92
txixml2texi . 4
Typed functions . 121
Typed variables . 124
Typewriter font . 65

U
Ugly black rectangles in hardcopy 163
Umlaut accent . 104
Unbreakable space, fixed . 115
Unbreakable space, variable 116
Uncluttered menu entry . 37
Undefining macros . 145
Underbar accent . 104
Underdot accent . 104
Underscore, breakpoint within @code 115
undirected single quote . 100
Unicode and TEX . 112
Unicode character, inserting 112
Unicode quotation characters 105
Unique index entries . 94
Unique node names requirement 29
Unnumbered float, creating . 84
Unprocessed text . 10
Unsplit file creation . 273
Up node of Top node . 30
UPDATED Automake variable 247
UPDATED-MONTH Automake variable 247
Updating nodes and menus 256
Updating requirements . 258
URI syntax for Info . 5
@url, examples of using . 52
URL,

examples of displaying . 52
indicating . 63
referring to . 51

<URL...> convention, not used 53
URLs, coloring in PDF output 54

URLs, PDF output of . 53
Usage tips . 242
us-ascii encoding, and translations 191
USE_ACCESSKEY . 180
USE_ISO . 180
USE_LINKS . 180
USE_NEXT_HEADING_FOR_LONE_NODE 180
USE_NODE_DIRECTIONS . 180
USE_NODES . 190
USE_NUMERIC_ENTITY . 190
USE_REL_REV . 180
USE_SETFILENAME_EXTENSION 190
USE_TITLEPAGE_FOR_TITLE . 180
USE_UNIDECODE . 190
USE_UP_NODE_FOR_ELEMENT_UP 190
USE_XML_SYNTAX . 180
User input . 57
User options, marking . 124
User-defined Texinfo commands 144
Using Info-validate . 272
Using Texinfo in general . 2

V
Validating a large file . 272
Value of an expression, indicating 109
Variables, in typed languages 124
Variables, object-oriented . 125
Verbatim copying license . 249
Verbatim environment . 69
Verbatim in-line text . 59
Verbatim, include file . 156
Verbatim, small . 70
--verbose . 170
-V . 170
VERBOSE . 170
Version control keywords, preventing expansion

of . 116
Version number, for install-info 201
--version, for install-info 201
--version, for texi2any . 170
VERSION Automake variable 247
Versions of Texinfo, adapting to 141
VERTICAL_HEAD_NAVIGATION 180
Vertically holding text together 116
Visibility of conditional text 134
vr (variable) index . 91

General Index 317

W
@w, for blank items . 77
<warning> DocBook tag . 67
White space in node name . 30
Whitespace in macros . 145
Whitespace, collapsed around continuations . . . 119
Whitespace, controlling in conditionals 137
Whitespace, inserting . 101
Whole manual, in Info format 283
Width of images . 87
Width of text area . 281
Widths, defining multitable column 82
Wildcards . 160
word counting . 174
Words and phrases, marking them 55
WORDS_IN_PAGE . 180
Writing a menu . 34
Writing a @node line . 27

Writing index entries . 93

X
xdvi . 3
--xml . 170
XML DocBook output, overview 4
XML Texinfo output, overview 4
XML, including raw . 136
--Xopt str . 170
XPM image format . 87
XREF_USE_FLOAT_LABEL . 180
XREF_USE_NODE_NAME_ARG . 180
XZ-compressed dir files, reading 199

Y
Years, in copyright line . 17

	Texinfo Copying Conditions
	1 Overview of Texinfo
	Reporting Bugs
	Output Formats
	Info Files
	Printed Books
	Adding Output Formats
	History

	2 Writing a Texinfo File
	General Syntactic Conventions
	Comments
	What a Texinfo File Must Have
	Short Sample
	Texinfo File Header
	The First Line of a Texinfo File
	@setfilename: Set the Output File Name
	@settitle: Set the Document Title
	Preamble
	Start and End of Header for Emacs

	Directory Category
	Document Permissions
	@copying: Declare Copying Permissions
	@insertcopying: Include Permissions Text

	Title and Copyright Pages
	@titlepage
	@title, @subtitle, and @author
	@titlefont, @center, and @sp
	Copyright Page
	Heading Generation

	Generating a Table of Contents
	The `Top' Node and Master Menu
	Parts of a Master Menu

	The Body of the Document
	Ending a Texinfo File

	3 Nodes
	Writing a @node Line
	Choosing Node Names
	@node Line Requirements
	The First Node
	The @top Sectioning Command
	Texinfo Document Structure
	Node and Menu Illustration
	Node Descriptions
	Menus
	Writing a Menu
	A Menu Example
	Menu Location
	The Parts of a Menu
	Less Cluttered Menu Entry
	Referring to Other Info Files

	4 Chapter Structuring
	Tree Structure of Sections
	Structuring Command Types
	@chapter: Chapter Structuring
	@unnumbered, @appendix: Chapters with Other Labeling
	@majorheading, @chapheading: Chapter-level Headings
	@section: Sections Below Chapters
	@unnumberedsec, @appendixsec, @heading
	@subsection: Subsections Below Sections
	The @subsection-like Commands
	@subsubsection and Other Subsub Commands
	@part: Groups of Chapters
	Raise/lower Sections: @raisesections and @lowersections

	5 Cross-references
	Different Cross-reference Commands
	Parts of a Cross-reference
	@xref with One Argument
	@xref with Two Arguments
	@xref with Three Arguments
	@xref with Four and Five Arguments
	Referring to a Manual as a Whole
	@xref
	@ref
	@pxref
	@anchor: Defining Arbitrary Cross-reference Targets
	@link: Plain, unadorned hyperlink
	@inforef: Cross-references to Info-only Material
	@url, @uref{url[, text][, replacement]}
	@url Examples
	URL Line Breaking
	@url PDF Output Format

	@cite{reference}
	PDF Colors

	6 Marking Text, Words and Phrases
	Indicating Definitions, Commands, etc.
	Highlighting Commands are Useful
	@code{sample-code}
	@kbd{keyboard-characters}
	@key{key-name}
	@samp{text}
	@verb{chartextchar}
	@var{metasyntactic-variable}
	@env{environment-variable}
	@file{file-name}
	@command{command-name}
	@option{option-name}
	@dfn{term}
	@abbr{abbreviation[, meaning]}
	@acronym{acronym[, meaning]}
	@indicateurl{uniform-resource-locator}
	@email{email-address[, displayed-text]}

	Emphasizing Text
	@emph{text} and @strong{text}
	@sc{text}: The Small Caps Font
	Fonts for Printing

	7 Quotations and Examples
	Block Enclosing Commands
	@quotation: Block Quotations
	@indentedblock: Indented text blocks
	@example: Example Text
	@verbatim: Literal Text
	@lisp: Marking a Lisp Example
	@display: Examples Using the Text Font
	@format: Examples Using the Full Line Width
	@exdent: Undoing a Line's Indentation
	@flushleft and @flushright
	@raggedright: Ragged Right Text
	@noindent: Omitting Indentation
	@indent: Forcing Indentation
	@cartouche: Rounded Rectangles
	@small... Block Commands

	8 Lists and Tables
	Introducing Lists
	@itemize: Making an Itemized List
	@enumerate: Making a Numbered or Lettered List
	Making a Two-column Table
	Using the @table Command
	@ftable and @vtable
	@itemx: Second and Subsequent Items

	@multitable: Multi-column Tables
	Multitable Column Widths
	Multitable Rows

	9 Special Displays
	Floats
	@float [type][,label]: Floating Material
	@caption & @shortcaption
	@listoffloats: Tables of Contents for Floats

	Inserting Images
	Image Syntax
	Image Scaling

	Footnotes
	Footnote Commands
	Footnote Styles

	10 Indices
	Predefined Indices
	Defining the Entries of an Index
	Advanced Indexing Commands
	Making Index Entries
	Printing Indices and Menus
	Combining Indices
	@syncodeindex: Combining Indices Using @code
	@synindex: Combining Indices

	Defining New Indices

	11 Special Insertions
	Special Characters: Inserting @ {} , \ # &
	Inserting `@' with @@ and @atchar{}
	Inserting `{ `}' with @{ @} and @l rbracechar{}
	Inserting `,' with @comma{}
	Inserting `\' with @backslashchar{}
	Inserting `#' with @hashchar{}
	Inserting `&' with @& and @ampchar{}

	Inserting Quote Characters
	Inserting Space
	Multiple Spaces
	Not Ending a Sentence
	Ending a Sentence
	@frenchspacing val: Control Sentence Spacing
	@dmn{dimension}: Format a Dimension

	Inserting Accents
	Inserting Quotation Marks
	@sub and @sup: Inserting Subscripts and Superscripts
	@math and @displaymath: Formatting Mathematics
	Glyphs for Text
	@TeX{} (TeX) and @LaTeX{} (LaTeX)
	@copyright{} (copyright)
	@registeredsymbol{} (R)
	@dots (...) and @enddots (...)
	@bullet (bullet)
	@euro (euro): Euro Currency Symbol
	@pounds (pounds): Pounds Sterling
	@textdegree (o): Degrees Symbol
	@minus (-): Inserting a Minus Sign
	@geq (>=) and @leq (<=): Inserting Relations

	Glyphs for Programming
	Glyphs Summary
	@result{} (=>): Result of an Expression
	@expansion{} (==>): Indicating an Expansion
	@print{} (-|): Indicating Generated Output
	@error{} (error): Indicating an Error Message
	@equiv{} (===): Indicating Equivalence
	@point{} (.): Indicating Point in a Buffer
	Click Sequences

	Inserting Unicode: @U

	12 Forcing and Preventing Breaks
	Break Commands
	@* and @/: Generate and Allow Line Breaks
	@- and @hyphenation: Hyphenation in Printed Output
	@allowcodebreaks: Control Line Breaks in @code
	@w{text}: Prevent Line Breaks
	@tie{}: Inserting an Unbreakable Space
	@sp n: Insert Blank Lines
	@page: Start a New Page
	@group: Prevent Page Breaks
	@need mils: Prevent Page Breaks

	13 Definition Commands
	The Template for a Definition
	Definition Command Continuation Lines
	Optional and Repeated Arguments
	Omitting the Space After a Definition Name
	@deffnx, et al.: Two or More `First' Lines
	The Definition Commands
	Functions and Similar Entities
	Functions in Typed Languages
	Variables and Similar Entities
	Variables in Typed Languages
	Data Types
	Object-Oriented Programming
	Object-Oriented Variables
	Object-Oriented Methods

	Generic Definition Commands
	Conventions for Writing Definitions
	A Sample Function Definition

	14 Internationalization
	@documentlanguage ll[_cc]: Set the Document Language
	@documentencoding enc: Set Input Encoding

	15 Conditionally Visible Text
	Conditional Commands
	Conditional Not Commands
	Raw Formatter Commands
	Inline Conditionals: @inline, @inlineifelse, @inlineraw
	Flags: @set, @clear, conditionals, and @value
	@set and @value
	@ifset and @ifclear
	@inlineifset and @inlineifclear
	@value Example

	Testing for Texinfo Commands: @ifcommanddefined, @ifcommandnotdefined
	Conditional Nesting

	16 Defining New Texinfo Commands
	Defining Macros
	Invoking Macros
	Macro Details and Caveats
	@alias new=existing
	Line Macros
	@definfoenclose: Customized Highlighting
	External Macro Processors: Line Directives
	#line Directive
	#line and TeX
	#line Syntax Details

	17 Include Files
	How to Use Include Files
	Sample File with @include
	@verbatiminclude file: Include a File Verbatim

	18 Formatting and Printing with TeX
	Use TeX
	Format with texi2dvi or texi2pdf
	Format with tex/texindex
	Formatting Partial Documents
	Details of texindex

	Print with lpr from Shell
	Preparing for TeX
	Overfull ``hboxes''

	19 texi2any: The Translator for Texinfo
	Invoking texi2any from a Shell
	Environment Variables Recognized by texi2any
	texi2any Printed Output
	Customization Variables
	Customization Variables for @-Commands
	Customization Variables and Options
	HTML Customization Variables
	MathJax Customization Variables
	latex2html Customization Variables
	tex4ht Customization Variables
	LaTeX Customization Variables
	Other Customization Variables

	Internationalization of Document Strings
	Invoking pod2texi: Convert Pod to Texinfo
	pod2texi

	texi2html: Ancestor of texi2any

	20 Creating and Installing Info Files
	Installing an Info File
	The Directory File dir
	Listing a New Info File
	Info Files in Other Directories
	Installing Info Directory Files
	Invoking install-info

	Tag Files and Split Files
	Info Format FAQ

	21 Generating HTML
	HTML Translation
	HTML Splitting
	HTML CSS
	@documentdescription: Summary Text
	Generating EPUB
	Container Directory and Output Files
	EPUB Cross-References
	HTML Generated for EPUB

	Code Examples Syntax Highlighting in HTML
	HTML Cross-references
	HTML Cross-reference Link Basics
	HTML Cross-reference Node Name Expansion
	HTML Cross-reference Command Expansion
	HTML Cross-reference 8-bit Character Expansion
	HTML Cross-reference Mismatch
	HTML Cross-reference Configuration: htmlxref.cnf

	A @-Command Details
	@-Command Syntax
	@-Command List
	@-Command Contexts
	Obsolete @-Commands

	B Tips and Hints
	C Sample Texinfo Files
	GNU Sample Texts
	Verbatim Copying License
	All-permissive Copying License

	D Using Texinfo Mode
	Texinfo Mode Overview
	The Usual GNU Emacs Editing Commands
	Inserting Frequently Used Commands
	Showing the Sectioning Structure of a File
	Using texinfo-show-structure
	Using occur

	Updating Nodes and Menus
	The Updating Commands
	Updating Requirements
	Update Outer File and Include Files
	Include Files Requirements
	Other Updating Commands

	Formatting for Info
	Running texi2any/makeinfo Within Emacs
	The texinfo-format... Commands

	Formatting and Printing with Emacs
	Formatting and Printing in Texinfo Mode
	Using the Local Variables List

	Texinfo Mode Summary
	Direct Formatting of Info files
	Tagifying a File
	Splitting a File Manually

	Catching Mistakes
	texi2any Preferred
	Catching Errors with Info Formatting
	Debugging with TeX
	Finding Badly Referenced Nodes
	Using Info-validate
	Creating an Unsplit File and Adding a Tag Table

	Batch Formatting

	E Global Document Commands
	@setchapternewpage: Blank Pages Before Chapters
	Page Headings
	The @headings Command
	Standard Heading Formats
	How to Make Your Own Headings

	@paragraphindent: Controlling Paragraph Indentation
	@firstparagraphindent: Indenting After Headings
	@exampleindent: Environment Indenting
	@smallbook: Printing ``Small'' Books
	Printing on A4 Paper
	@pagesizes [width][, height]: Custom Page Sizes
	Microtypography
	Magnification

	F Info Format Specification
	Info Format: A Whole Manual
	Info Format: Preamble
	Info Format: Indirect Table
	Info Format: Tag Table
	Info Format: Local Variables
	Info Format: Regular Nodes
	Info Format: Menu
	Info Format: Image
	Info Format: Printindex
	Info Format: Cross-reference

	G GNU Free Documentation License
	Command and Variable Index
	General Index

