Next: Introduction, Previous: (dir), Up: (dir) [Contents][Index]
This file documents the GNU Automake package for creating GNU Standards-compliant Makefiles from template files. This edition documents version 1.4.
--gnu
and --gnits
--cygnus
Next: General ideas, Previous: GNU Automake, Up: GNU Automake [Contents][Index]
Automake is a tool for automatically generating Makefile.ins from
files called Makefile.am. Each Makefile.am is basically a
series of make
macro definitions (with rules being thrown in
occasionally). The generated Makefile.ins are compliant with the
GNU Makefile standards.
The GNU Makefile Standards Document (see Makefile Conventions in The GNU Coding Standards) is long, complicated, and subject to change. The goal of Automake is to remove the burden of Makefile maintenance from the back of the individual GNU maintainer (and put it on the back of the Automake maintainer).
The typical Automake input file is simply a series of macro definitions. Each such file is processed to create a Makefile.in. There should generally be one Makefile.am per directory of a project.
Automake does constrain a project in certain ways; for instance it assumes that the project uses Autoconf (see Introduction in The Autoconf Manual), and enforces certain restrictions on the configure.in contents.
Automake requires perl
in order to generate the
Makefile.ins. However, the distributions created by Automake are
fully GNU standards-compliant, and do not require perl
in order
to be built.
Mail suggestions and bug reports for Automake to [email protected].
Next: Some example packages, Previous: Introduction, Up: GNU Automake [Contents][Index]
The following sections cover a few basic ideas that will help you understand how Automake works.
Next: Depth, Previous: General ideas, Up: General ideas [Contents][Index]
Automake works by reading a Makefile.am and generating a Makefile.in. Certain macros and targets defined in the Makefile.am instruct Automake to generate more specialized code; for instance, a ‘bin_PROGRAMS’ macro definition will cause targets for compiling and linking programs to be generated.
The macro definitions and targets in the Makefile.am are copied
verbatim into the generated file. This allows you to add arbitrary code
into the generated Makefile.in. For instance the Automake
distribution includes a non-standard cvs-dist
target, which the
Automake maintainer uses to make distributions from his source control
system.
Note that GNU make extensions are not recognized by Automake. Using such extensions in a Makefile.am will lead to errors or confusing behavior.
Automake tries to group comments with adjoining targets and macro definitions in an intelligent way.
A target defined in Makefile.am generally overrides any such
target of a similar name that would be automatically generated by
automake
. Although this is a supported feature, it is generally
best to avoid making use of it, as sometimes the generated rules are
very particular.
Similarly, a macro defined in Makefile.am will override any
definition of the macro that automake
would ordinarily create.
This feature is more often useful than the ability to override a target
definition. Be warned that many of the macros generated by
automake
are considered to be for internal use only, and their
names might change in future releases.
When examining a macro definition, Automake will recursively examine
macros referenced in the definition. For example, if Automake is
looking at the content of foo_SOURCES
in this snippet
xs = a.c b.c foo_SOURCES = c.c $(xs)
it would use the files a.c, b.c, and c.c as the
contents of foo_SOURCES
.
Automake also allows a form of comment which is not copied into the output; all lines beginning with ‘##’ are completely ignored by Automake.
It is customary to make the first line of Makefile.am read:
## Process this file with automake to produce Makefile.in
Next: Strictness, Previous: General Operation, Up: General ideas [Contents][Index]
automake
supports three kinds of directory hierarchy:
‘flat’, ‘shallow’, and ‘deep’.
A flat package is one in which all the files are in a single
directory. The Makefile.am for such a package by definition
lacks a SUBDIRS
macro. An example of such a package is
termutils
.
A deep package is one in which all the source lies in
subdirectories; the top level directory contains mainly configuration
information. GNU cpio
is a good example of such a package, as is
GNU tar
. The top level Makefile.am for a deep package
will contain a SUBDIRS
macro, but no other macros to define
objects which are built.
A shallow package is one in which the primary source resides in
the top-level directory, while various parts (typically libraries)
reside in subdirectories. Automake is one such package (as is GNU
make
, which does not currently use automake
).
Next: The Uniform Naming Scheme, Previous: Depth, Up: General ideas [Contents][Index]
While Automake is intended to be used by maintainers of GNU packages, it does make some effort to accommodate those who wish to use it, but do not want to use all the GNU conventions.
To this end, Automake supports three levels of strictness—the strictness indicating how stringently Automake should check standards conformance.
The valid strictness levels are:
Automake will check for only those things which are absolutely required for proper operations. For instance, whereas GNU standards dictate the existence of a NEWS file, it will not be required in this mode. The name comes from the fact that Automake is intended to be used for GNU programs; these relaxed rules are not the standard mode of operation.
Automake will check—as much as possible—for compliance to the GNU standards for packages. This is the default.
Automake will check for compliance to the as-yet-unwritten Gnits standards. These are based on the GNU standards, but are even more detailed. Unless you are a Gnits standards contributor, it is recommended that you avoid this option until such time as the Gnits standard is actually published.
For more information on the precise implications of the strictness
level, see The effect of --gnu
and --gnits
.
Next: How derived variables are named, Previous: Strictness, Up: General ideas [Contents][Index]
Automake macros (from here on referred to as variables) generally
follow a uniform naming scheme that makes it easy to decide how
programs (and other derived objects) are built, and how they are
installed. This scheme also supports configure
time
determination of what should be built.
At make
time, certain variables are used to determine which
objects are to be built. These variables are called primary
variables. For instance, the primary variable PROGRAMS
holds a
list of programs which are to be compiled and linked.
A different set of variables is used to decide where the built objects
should be installed. These variables are named after the primary
variables, but have a prefix indicating which standard directory should
be used as the installation directory. The standard directory names are
given in the GNU standards (see Directory Variables in The GNU Coding Standards). Automake extends this list with
pkglibdir
, pkgincludedir
, and pkgdatadir
; these are
the same as the non-‘pkg’ versions, but with ‘@PACKAGE@’
appended. For instance, pkglibdir
is defined as
$(datadir)/@PACKAGE@
.
For each primary, there is one additional variable named by prepending
‘EXTRA_’ to the primary name. This variable is used to list
objects which may or may not be built, depending on what
configure
decides. This variable is required because Automake
must statically know the entire list of objects that may be built in
order to generate a Makefile.in that will work in all cases.
For instance, cpio
decides at configure time which programs are
built. Some of the programs are installed in bindir
, and some
are installed in sbindir
:
EXTRA_PROGRAMS = mt rmt bin_PROGRAMS = cpio pax sbin_PROGRAMS = @PROGRAMS@
Defining a primary variable without a prefix (e.g. PROGRAMS
) is
an error.
Note that the common ‘dir’ suffix is left off when constructing the variable names; thus one writes ‘bin_PROGRAMS’ and not ‘bindir_PROGRAMS’.
Not every sort of object can be installed in every directory. Automake will flag those attempts it finds in error. Automake will also diagnose obvious misspellings in directory names.
Sometimes the standard directories—even as augmented by Automake—
are not enough. In particular it is sometimes useful, for clarity, to
install objects in a subdirectory of some predefined directory. To this
end, Automake allows you to extend the list of possible installation
directories. A given prefix (e.g. ‘zar’) is valid if a variable of
the same name with ‘dir’ appended is defined (e.g. zardir
).
For instance, until HTML support is part of Automake, you could use this to install raw HTML documentation:
htmldir = $(prefix)/html html_DATA = automake.html
The special prefix ‘noinst’ indicates that the objects in question should not be installed at all.
The special prefix ‘check’ indicates that the objects in question
should not be built until the make check
command is run.
Possible primary names are ‘PROGRAMS’, ‘LIBRARIES’, ‘LISP’, ‘SCRIPTS’, ‘DATA’, ‘HEADERS’, ‘MANS’, and ‘TEXINFOS’.
Previous: The Uniform Naming Scheme, Up: General ideas [Contents][Index]
Sometimes a Makefile variable name is derived from some text the user
supplies. For instance, program names are rewritten into Makefile macro
names. Automake canonicalizes this text, so that it does not have to
follow Makefile macro naming rules. All characters in the name except
for letters, numbers, and the underscore are turned into underscores
when making macro references. For example, if your program is named
sniff-glue
, the derived variable name would be
sniff_glue_SOURCES
, not sniff-glue_SOURCES
.
Next: Creating a Makefile.in, Previous: General ideas, Up: GNU Automake [Contents][Index]
Next: A classic program, Previous: Some example packages, Up: Some example packages [Contents][Index]
Let’s suppose you just finished writing zardoz
, a program to make
your head float from vortex to vortex. You’ve been using Autoconf to
provide a portability framework, but your Makefile.ins have been
ad-hoc. You want to make them bulletproof, so you turn to Automake.
The first step is to update your configure.in to include the
commands that automake
needs. The simplest way to do this is to
add an AM_INIT_AUTOMAKE
call just after AC_INIT
:
AM_INIT_AUTOMAKE(zardoz, 1.0)
Since your program doesn’t have any complicating factors (e.g., it
doesn’t use gettext
, it doesn’t want to build a shared library),
you’re done with this part. That was easy!
Now you must regenerate configure. But to do that, you’ll need
to tell autoconf
how to find the new macro you’ve used. The
easiest way to do this is to use the aclocal
program to generate
your aclocal.m4 for you. But wait... you already have an
aclocal.m4, because you had to write some hairy macros for your
program. The aclocal
program lets you put your own macros into
acinclude.m4, so simply rename and then run:
mv aclocal.m4 acinclude.m4 aclocal autoconf
Now it is time to write your Makefile.am for zardoz
.
Since zardoz
is a user program, you want to install it where the
rest of the user programs go. Additionally, zardoz
has some
Texinfo documentation. Your configure.in script uses
AC_REPLACE_FUNCS
, so you need to link against ‘@LIBOBJS@’.
So here’s what you’d write:
bin_PROGRAMS = zardoz zardoz_SOURCES = main.c head.c float.c vortex9.c gun.c zardoz_LDADD = @LIBOBJS@ info_TEXINFOS = zardoz.texi
Now you can run automake --add-missing
to generate your
Makefile.in and grab any auxiliary files you might need, and
you’re done!
Next: Building etags and ctags, Previous: A simple example, start to finish, Up: Some example packages [Contents][Index]
GNU hello is renowned for its classic simplicity and versatility. This section shows how Automake could be used with the GNU Hello package. The examples below are from the latest beta version of GNU Hello, but with all of the maintainer-only code stripped out, as well as all copyright comments.
Of course, GNU Hello is somewhat more featureful than your traditional two-liner. GNU Hello is internationalized, does option processing, and has a manual and a test suite. GNU Hello is a deep package.
Here is the configure.in from GNU Hello:
dnl Process this file with autoconf to produce a configure script. AC_INIT(src/hello.c) AM_INIT_AUTOMAKE(hello, 1.3.11) AM_CONFIG_HEADER(config.h) dnl Set of available languages. ALL_LINGUAS="de fr es ko nl no pl pt sl sv" dnl Checks for programs. AC_PROG_CC AC_ISC_POSIX dnl Checks for libraries. dnl Checks for header files. AC_STDC_HEADERS AC_HAVE_HEADERS(string.h fcntl.h sys/file.h sys/param.h) dnl Checks for library functions. AC_FUNC_ALLOCA dnl Check for st_blksize in struct stat AC_ST_BLKSIZE dnl internationalization macros AM_GNU_GETTEXT AC_OUTPUT([Makefile doc/Makefile intl/Makefile po/Makefile.in \ src/Makefile tests/Makefile tests/hello], [chmod +x tests/hello])
The ‘AM_’ macros are provided by Automake (or the Gettext library); the rest are standard Autoconf macros.
The top-level Makefile.am:
EXTRA_DIST = BUGS ChangeLog.O SUBDIRS = doc intl po src tests
As you can see, all the work here is really done in subdirectories.
The po and intl directories are automatically generated
using gettextize
; they will not be discussed here.
In doc/Makefile.am we see:
info_TEXINFOS = hello.texi hello_TEXINFOS = gpl.texi
This is sufficient to build, install, and distribute the GNU Hello manual.
Here is tests/Makefile.am:
TESTS = hello EXTRA_DIST = hello.in testdata
The script hello is generated by configure
, and is the
only test case. make check
will run this test.
Last we have src/Makefile.am, where all the real work is done:
bin_PROGRAMS = hello hello_SOURCES = hello.c version.c getopt.c getopt1.c getopt.h system.h hello_LDADD = @INTLLIBS@ @ALLOCA@ localedir = $(datadir)/locale INCLUDES = -I../intl -DLOCALEDIR=\"$(localedir)\"
Previous: A classic program, Up: Some example packages [Contents][Index]
Here is another, trickier example. It shows how to generate two
programs (ctags
and etags
) from the same source file
(etags.c). The difficult part is that each compilation of
etags.c requires different cpp
flags.
bin_PROGRAMS = etags ctags ctags_SOURCES = ctags_LDADD = ctags.o etags.o: etags.c $(COMPILE) -DETAGS_REGEXPS -c etags.c ctags.o: etags.c $(COMPILE) -DCTAGS -o ctags.o -c etags.c
Note that ctags_SOURCES
is defined to be empty—that way no
implicit value is substituted. The implicit value, however, is used to
generate etags
from etags.o.
ctags_LDADD
is used to get ctags.o into the link line.
ctags_DEPENDENCIES
is generated by Automake.
The above rules won’t work if your compiler doesn’t accept both
‘-c’ and ‘-o’. The simplest fix for this is to introduce a
bogus dependency (to avoid problems with a parallel make
):
etags.o: etags.c ctags.o $(COMPILE) -DETAGS_REGEXPS -c etags.c ctags.o: etags.c $(COMPILE) -DCTAGS -c etags.c && mv etags.o ctags.o
Also, these explicit rules do not work if the de-ANSI-fication feature is used (see Automatic de-ANSI-fication). Supporting de-ANSI-fication requires a little more work:
etags._o: etags._c ctags.o $(COMPILE) -DETAGS_REGEXPS -c etags.c ctags._o: etags._c $(COMPILE) -DCTAGS -c etags.c && mv etags._o ctags.o
Next: Scanning configure.in, Previous: Some example packages, Up: GNU Automake [Contents][Index]
To create all the Makefile.ins for a package, run the
automake
program in the top level directory, with no arguments.
automake
will automatically find each appropriate
Makefile.am (by scanning configure.in; see Scanning configure.in)
and generate the corresponding Makefile.in. Note that
automake
has a rather simplistic view of what constitutes a
package; it assumes that a package has only one configure.in, at
the top. If your package has multiple configure.ins, then you
must run automake
in each directory holding a
configure.in.
You can optionally give automake
an argument; .am is
appended to the argument and the result is used as the name of the input
file. This feature is generally only used to automatically rebuild an
out-of-date Makefile.in. Note that automake
must always
be run from the topmost directory of a project, even if being used to
regenerate the Makefile.in in some subdirectory. This is
necessary because automake
must scan configure.in, and
because automake
uses the knowledge that a Makefile.in is
in a subdirectory to change its behavior in some cases.
automake
accepts the following options:
Automake requires certain common files to exist in certain situations;
for instance config.guess is required if configure.in runs
AC_CANONICAL_HOST
. Automake is distributed with several of these
files; this option will cause the missing ones to be automatically added
to the package, whenever possible. In general if Automake tells you a
file is missing, try using this option. By default Automake tries to
make a symbolic link pointing to its own copy of the missing file; this
can be changed with --copy
.
Look for Automake data files in directory dir instead of in the installation directory. This is typically used for debugging.
Tell Automake where the build directory is. This option is used when
including dependencies into a Makefile.in generated by make
dist
; it should not be used otherwise.
When used with --add-missing
, causes installed files to be
copied. The default is to make a symbolic link.
Causes the generated Makefile.ins to follow Cygnus rules, instead
of GNU or Gnits rules. For more information, see The effect of --cygnus
.
Set the global strictness to ‘foreign’. For more information, see Strictness.
Set the global strictness to ‘gnits’. For more information, see
The effect of --gnu
and --gnits
.
Set the global strictness to ‘gnu’. For more information, see
The effect of --gnu
and --gnits
. This is the default strictness.
Print a summary of the command line options and exit.
Include all automatically generated dependency information (see Automatic dependency tracking) in the generated Makefile.in. This is generally done when making a distribution; see What Goes in a Distribution.
Generate a file concatenating all automatically generated dependency information (see Automatic dependency tracking) into one file, .dep_segment. This is generally done when making a distribution; see What Goes in a Distribution. It is useful when maintaining a SMakefile or makefiles for other platforms (Makefile.DOS, etc.) It can only be used in conjunction with ‘--include-deps’, ‘--srcdir-name’, and ‘--build-dir’. Note that if this option is given, no other processing is done.
Ordinarily automake
creates all Makefile.ins mentioned in
configure.in. This option causes it to only update those
Makefile.ins which are out of date with respect to one of their
dependents.
Put the generated Makefile.in in the directory dir. Ordinarily each Makefile.in is created in the directory of the corresponding Makefile.am. This option is used when making distributions.
Tell Automake the name of the source directory associated with the
current build. This option is used when including dependencies into a
Makefile.in generated by make dist
; it should not be used
otherwise.
Cause Automake to print information about which files are being read or created.
Print the version number of Automake and exit.
Next: The top-level Makefile.am, Previous: Creating a Makefile.in, Up: GNU Automake [Contents][Index]
Automake scans the package’s configure.in to determine certain
information about the package. Some autoconf
macros are required
and some variables must be defined in configure.in. Automake
will also use information from configure.in to further tailor its
output.
Automake also supplies some Autoconf macros to make the maintenance
easier. These macros can automatically be put into your
aclocal.m4 using the aclocal
program.
Next: Other things Automake recognizes, Previous: Scanning configure.in, Up: Scanning configure.in [Contents][Index]
The simplest way to meet the basic Automake requirements is to use the
macro AM_INIT_AUTOMAKE
(see Autoconf macros supplied with Automake). But if you prefer, you
can do the required steps by hand:
PACKAGE
and VERSION
with
AC_SUBST
.
PACKAGE
should be the name of the package as it appears when
bundled for distribution. For instance, Automake defines PACKAGE
to be ‘automake’. VERSION
should be the version number of
the release that is being developed. We recommend that you make
configure.in the only place in your package where the version
number is defined; this makes releases simpler.
Automake doesn’t do any interpretation of PACKAGE
or
VERSION
, except in ‘Gnits’ mode (see The effect of --gnu
and --gnits
).
AC_ARG_PROGRAM
if a program or script is installed.
See Transforming Program Names When Installing in The Autoconf.
AC_PROG_MAKE_SET
if the package is not flat. See Creating Output Files in The Autoconf Manual.
AM_SANITY_CHECK
to make sure the build environment is sane.
AC_PROG_INSTALL
(see Particular Program Checks in The
Autoconf Manual).
AM_MISSING_PROG
to see whether the programs aclocal
,
autoconf
, automake
, autoheader
, and makeinfo
are in the build environment. Here is how this is done:
missing_dir=`cd $ac_aux_dir && pwd` AM_MISSING_PROG(ACLOCAL, aclocal, $missing_dir) AM_MISSING_PROG(AUTOCONF, autoconf, $missing_dir) AM_MISSING_PROG(AUTOMAKE, automake, $missing_dir) AM_MISSING_PROG(AUTOHEADER, autoheader, $missing_dir) AM_MISSING_PROG(MAKEINFO, makeinfo, $missing_dir)
Here are the other macros which Automake requires but which are not run
by AM_INIT_AUTOMAKE
:
AC_OUTPUT
Automake uses this to determine which files to create (see Creating Output Files in The Autoconf Manual). Listed files
named Makefile
are treated as Makefiles. Other listed
files are treated differently. Currently the only difference is that a
Makefile is removed by make distclean
, while other files
are removed by make clean
.
Next: Auto-generating aclocal.m4, Previous: Configuration requirements, Up: Scanning configure.in [Contents][Index]
Automake will also recognize the use of certain macros and tailor the generated Makefile.in appropriately. Currently recognized macros and their effects are:
AC_CONFIG_HEADER
Automake requires the use of AM_CONFIG_HEADER
, which is similar
to AC_CONFIG_HEADER
(see Configuration Header Files in The Autoconf Manual), but does
some useful Automake-specific work.
AC_CONFIG_AUX_DIR
Automake will look for various helper scripts, such as mkinstalldirs, in the directory named in this macro invocation. If not seen, the scripts are looked for in their ‘standard’ locations (either the top source directory, or in the source directory corresponding to the current Makefile.am, whichever is appropriate). See Finding ‘configure’ Input in The Autoconf Manual. FIXME: give complete list of things looked for in this directory
AC_PATH_XTRA
Automake will insert definitions for the variables defined by
AC_PATH_XTRA
into each Makefile.in that builds a C program
or library. See System Services in The
Autoconf Manual.
AC_CANONICAL_HOST
AC_CHECK_TOOL
Automake will ensure that config.guess and config.sub exist. Also, the Makefile variables ‘host_alias’ and ‘host_triplet’ are introduced. See both Getting the Canonical System Type in The Autoconf Manual, and Generic Program Checks in The Autoconf Manual.
AC_CANONICAL_SYSTEM
This is similar to AC_CANONICAL_HOST
, but also defines the
Makefile variables ‘build_alias’ and ‘target_alias’.
See Getting the Canonical System Type in The
Autoconf Manual.
AC_FUNC_ALLOCA
AC_FUNC_GETLOADAVG
AC_FUNC_MEMCMP
AC_STRUCT_ST_BLOCKS
AC_FUNC_FNMATCH
AM_FUNC_STRTOD
AC_REPLACE_FUNCS
AC_REPLACE_GNU_GETOPT
AM_WITH_REGEX
Automake will ensure that the appropriate dependencies are generated for
the objects corresponding to these macros. Also, Automake will verify
that the appropriate source files are part of the distribution. Note
that Automake does not come with any of the C sources required to use
these macros, so automake -a
will not install the sources.
See Building a library, for more information. Also, see Particular Function Checks in The Autoconf Manual.
LIBOBJS
Automake will detect statements which put .o files into
LIBOBJS
, and will treat these additional files as if they were
discovered via AC_REPLACE_FUNCS
. See Generic Function Checks in The Autoconf Manual.
AC_PROG_RANLIB
This is required if any libraries are built in the package. See Particular Program Checks in The Autoconf Manual.
AC_PROG_CXX
This is required if any C++ source is included. See Particular Program Checks in The Autoconf Manual.
AC_PROG_F77
This is required if any Fortran 77 source is included. This macro is distributed with Autoconf version 2.13 and later. See Particular Program Checks in The Autoconf Manual.
AC_F77_LIBRARY_LDFLAGS
This is required for programs and shared libraries that are a mixture of languages that include Fortran 77 (see Mixing Fortran 77 With C and C++). See Autoconf macros supplied with Automake.
AM_PROG_LIBTOOL
Automake will turn on processing for libtool
(see Introduction in The Libtool Manual).
AC_PROG_YACC
If a Yacc source file is seen, then you must either use this macro or define the variable ‘YACC’ in configure.in. The former is preferred (see Particular Program Checks in The Autoconf Manual).
AC_DECL_YYTEXT
This macro is required if there is Lex source in the package. See Particular Program Checks in The Autoconf Manual.
AC_PROG_LEX
If a Lex source file is seen, then this macro must be used. See Particular Program Checks in The Autoconf Manual.
ALL_LINGUAS
If Automake sees that this variable is set in configure.in, it will check the po directory to ensure that all the named ‘.po’ files exist, and that all the ‘.po’ files that exist are named.
AM_C_PROTOTYPES
This is required when using automatic de-ANSI-fication; see Automatic de-ANSI-fication.
AM_GNU_GETTEXT
This macro is required for packages which use GNU gettext (see Gettext). It is distributed with gettext. If Automake sees this macro it ensures that the package meets some of gettext’s requirements.
AM_MAINTAINER_MODE
¶This macro adds a ‘--enable-maintainer-mode’ option to
configure
. If this is used, automake
will cause
‘maintainer-only’ rules to be turned off by default in the
generated Makefile.ins. This macro is disallowed in ‘Gnits’
mode (see The effect of --gnu
and --gnits
). This macro defines the ‘MAINTAINER_MODE’
conditional, which you can use in your own Makefile.am.
AC_SUBST
AC_CHECK_TOOL
AC_CHECK_PROG
AC_CHECK_PROGS
AC_PATH_PROG
AC_PATH_PROGS
For each of these macros, the first argument is automatically defined as a variable in each generated Makefile.in. See Setting Output Variables in The Autoconf Manual, and Generic Program Checks in The Autoconf Manual.
Next: Autoconf macros supplied with Automake, Previous: Other things Automake recognizes, Up: Scanning configure.in [Contents][Index]
Automake includes a number of Autoconf macros which can be used in your
package; some of them are actually required by Automake in certain
situations. These macros must be defined in your aclocal.m4;
otherwise they will not be seen by autoconf
.
The aclocal
program will automatically generate aclocal.m4
files based on the contents of configure.in. This provides a
convenient way to get Automake-provided macros, without having to
search around. Also, the aclocal
mechanism is extensible for use
by other packages.
At startup, aclocal
scans all the .m4 files it can find,
looking for macro definitions. Then it scans configure.in. Any
mention of one of the macros found in the first step causes that macro,
and any macros it in turn requires, to be put into aclocal.m4.
The contents of acinclude.m4, if it exists, are also automatically included in aclocal.m4. This is useful for incorporating local macros into configure.
aclocal
accepts the following options:
--acdir=dir
¶Look for the macro files in dir instead of the installation directory. This is typically used for debugging.
--help
¶Print a summary of the command line options and exit.
-I dir
¶Add the directory dir to the list of directories searched for .m4 files.
--output=file
¶Cause the output to be put into file instead of aclocal.m4.
--print-ac-dir
¶Prints the name of the directory which aclocal
will search to
find the .m4 files. When this option is given, normal processing
is suppressed. This option can be used by a package to determine where
to install a macro file.
--verbose
¶Print the names of the files it examines.
--version
¶Print the version number of Automake and exit.
Next: Writing your own aclocal macros, Previous: Auto-generating aclocal.m4, Up: Scanning configure.in [Contents][Index]
AM_CONFIG_HEADER
Automake will generate rules to automatically regenerate the config header. If you do use this macro, you must create the file stamp-h.in in your source directory. It can be empty.
AM_ENABLE_MULTILIB
This is used when a “multilib” library is being built. A multilib library is one that is built multiple times, once per target flag combination. This is only useful when the library is intended to be cross-compiled. The first optional argument is the name of the Makefile being generated; it defaults to ‘Makefile’. The second option argument is used to find the top source directory; it defaults to the empty string (generally this should not be used unless you are familiar with the internals).
AM_FUNC_STRTOD
If the strtod
function is not available, or does not work
correctly (like the one on SunOS 5.4), add strtod.o to output
variable LIBOBJS
.
AM_FUNC_ERROR_AT_LINE
If the function error_at_line
is not found, then add
error.o to LIBOBJS
.
AM_FUNC_MKTIME
Check for a working mktime
function. If not found, add
mktime.o to ‘LIBOBJS’.
AM_FUNC_OBSTACK
Check for the GNU obstacks code; if not found, add obstack.o to ‘LIBOBJS’.
AM_C_PROTOTYPES
Check to see if function prototypes are understood by the compiler. If so, define ‘PROTOTYPES’ and set the output variables ‘U’ and ‘ANSI2KNR’ to the empty string. Otherwise, set ‘U’ to ‘_’ and ‘ANSI2KNR’ to ‘./ansi2knr’. Automake uses these values to implement automatic de-ANSI-fication.
AM_HEADER_TIOCGWINSZ_NEEDS_SYS_IOCTL
If the use of TIOCGWINSZ
requires <sys/ioctl.h>, then
define GWINSZ_IN_SYS_IOCTL
. Otherwise TIOCGWINSZ
can be
found in <termios.h>.
AM_INIT_AUTOMAKE
Runs many macros that most configure.in’s need. This macro has
two required arguments, the package and the version number. By default
this macro AC_DEFINE
’s ‘PACKAGE’ and ‘VERSION’. This
can be avoided by passing in a non-empty third argument.
AM_PATH_LISPDIR
Searches for the program emacs
, and, if found, sets the output
variable lispdir
to the full path to Emacs’ site-lisp directory.
AM_PROG_CC_STDC
If the C compiler in not in ANSI C mode by default, try to add an option
to output variable CC
to make it so. This macro tries various
options that select ANSI C on some system or another. It considers the
compiler to be in ANSI C mode if it handles function prototypes correctly.
If you use this macro, you should check after calling it whether the C
compiler has been set to accept ANSI C; if not, the shell variable
am_cv_prog_cc_stdc
is set to ‘no’. If you wrote your source
code in ANSI C, you can make an un-ANSIfied copy of it by using the
ansi2knr
option (see Automatic de-ANSI-fication).
AM_PROG_LEX
¶Like AC_PROG_LEX
with AC_DECL_YYTEXT
(see Particular Program Checks in The Autoconf Manual),
but uses the missing
script on systems that do not have
lex
. ‘HP-UX 10’ is one such system.
AM_SANITY_CHECK
This checks to make sure that a file created in the build directory is
newer than a file in the source directory. This can fail on systems
where the clock is set incorrectly. This macro is automatically run
from AM_INIT_AUTOMAKE
.
AM_SYS_POSIX_TERMIOS
¶Check to see if POSIX termios headers and functions are available on the
system. If so, set the shell variable am_cv_sys_posix_termios
to
‘yes’. If not, set the variable to ‘no’.
AM_TYPE_PTRDIFF_T
¶Define ‘HAVE_PTRDIFF_T’ if the type ‘ptrdiff_t’ is defined in <stddef.h>.
AM_WITH_DMALLOC
¶Add support for the
dmalloc
package. If the user configures with ‘--with-dmalloc’, then define
WITH_DMALLOC
and add ‘-ldmalloc’ to LIBS
.
AM_WITH_REGEX
¶Adds ‘--with-regex’ to the configure
command line. If
specified (the default), then the ‘regex’ regular expression
library is used, regex.o is put into ‘LIBOBJS’, and
‘WITH_REGEX’ is defined.. If ‘--without-regex’ is given, then
the ‘rx’ regular expression library is used, and rx.o is put
into ‘LIBOBJS’.
Previous: Autoconf macros supplied with Automake, Up: Scanning configure.in [Contents][Index]
The aclocal
program doesn’t have any built-in knowledge of any
macros, so it is easy to extend it with your own macros.
This is mostly used for libraries which want to supply their own
Autoconf macros for use by other programs. For instance the
gettext
library supplies a macro AM_GNU_GETTEXT
which
should be used by any package using gettext
. When the library is
installed, it installs this macro so that aclocal
will find it.
A file of macros should be a series of AC_DEFUN
’s. The
aclocal
programs also understands AC_REQUIRE
, so it is
safe to put each macro in a separate file. See Prerequisite Macros in The Autoconf Manual, and Macro Definitions in The Autoconf Manual.
A macro file’s name should end in .m4. Such files should be installed in $(datadir)/aclocal.
Next: Building Programs and Libraries, Previous: Scanning configure.in, Up: GNU Automake [Contents][Index]
In non-flat packages, the top level Makefile.am must tell
Automake which subdirectories are to be built. This is done via the
SUBDIRS
variable.
The SUBDIRS
macro holds a list of subdirectories in which
building of various sorts can occur. Many targets (e.g. all
) in
the generated Makefile will run both locally and in all specified
subdirectories. Note that the directories listed in SUBDIRS
are
not required to contain Makefile.ams; only Makefiles
(after configuration). This allows inclusion of libraries from packages
which do not use Automake (such as gettext
). The directories
mentioned in SUBDIRS
must be direct children of the current
directory. For instance, you cannot put ‘src/subdir’ into
SUBDIRS
.
In a deep package, the top-level Makefile.am is often very short. For instance, here is the Makefile.am from the GNU Hello distribution:
EXTRA_DIST = BUGS ChangeLog.O README-alpha SUBDIRS = doc intl po src tests
It is possible to override the SUBDIRS
variable if, like in the
case of GNU Inetutils
, you want to only build a subset of the
entire package. In your Makefile.am include:
SUBDIRS = @SUBDIRS@
Then in your configure.in you can specify:
SUBDIRS = "src doc lib po" AC_SUBST(SUBDIRS)
The upshot of this is that Automake is tricked into building the package
to take the subdirs, but doesn’t actually bind that list until
configure
is run.
Although the SUBDIRS
macro can contain configure substitutions
(e.g. ‘@DIRS@’); Automake itself does not actually examine the
contents of this variable.
If SUBDIRS
is defined, then your configure.in must include
AC_PROG_MAKE_SET
.
The use of SUBDIRS
is not restricted to just the top-level
Makefile.am. Automake can be used to construct packages of
arbitrary depth.
By default, Automake generates Makefiles which work depth-first
(‘postfix’). However, it is possible to change this ordering. You
can do this by putting ‘.’ into SUBDIRS
. For instance,
putting ‘.’ first will cause a ‘prefix’ ordering of
directories.
Next: Other Derived Objects, Previous: The top-level Makefile.am, Up: GNU Automake [Contents][Index]
A large part of Automake’s functionality is dedicated to making it easy to build programs and libraries.
Next: Building a library, Previous: Building Programs and Libraries, Up: Building Programs and Libraries [Contents][Index]
In a directory containing source that gets built into a program (as
opposed to a library), the ‘PROGRAMS’ primary is used. Programs
can be installed in bindir
, sbindir
, libexecdir
,
pkglibdir
, or not at all (‘noinst’).
For instance:
bin_PROGRAMS = hello
In this simple case, the resulting Makefile.in will contain code
to generate a program named hello
. The variable
hello_SOURCES
is used to specify which source files get built
into an executable:
hello_SOURCES = hello.c version.c getopt.c getopt1.c getopt.h system.h
This causes each mentioned ‘.c’ file to be compiled into the corresponding ‘.o’. Then all are linked to produce hello.
If ‘prog_SOURCES’ is needed, but not specified, then it defaults to the single file prog.c.
Multiple programs can be built in a single directory. Multiple programs can share a single source file, which must be listed in each ‘_SOURCES’ definition.
Header files listed in a ‘_SOURCES’ definition will be included in the distribution but otherwise ignored. In case it isn’t obvious, you should not include the header file generated by configure in an ‘_SOURCES’ variable; this file should not be distributed. Lex (‘.l’) and Yacc (‘.y’) files can also be listed; see Yacc and Lex support.
Automake must know all the source files that could possibly go into a
program, even if not all the files are built in every circumstance.
Any files which are only conditionally built should be listed in the
appropriate ‘EXTRA_’ variable. For instance, if
hello-linux.c were conditionally included in hello
, the
Makefile.am would contain:
EXTRA_hello_SOURCES = hello-linux.c
Similarly, sometimes it is useful to determine the programs that are to
be built at configure time. For instance, GNU cpio
only builds
mt
and rmt
under special circumstances.
In this case, you must notify Automake of all the programs that can
possibly be built, but at the same time cause the generated
Makefile.in to use the programs specified by configure
.
This is done by having configure
substitute values into each
‘_PROGRAMS’ definition, while listing all optionally built programs
in EXTRA_PROGRAMS
.
If you need to link against libraries that are not found by
configure
, you can use LDADD
to do so. This variable
actually can be used to add any options to the linker command line.
Sometimes, multiple programs are built in one directory but do not share
the same link-time requirements. In this case, you can use the
‘prog_LDADD’ variable (where prog is the name of the
program as it appears in some ‘_PROGRAMS’ variable, and usually
written in lowercase) to override the global LDADD
. If this
variable exists for a given program, then that program is not linked
using LDADD
.
For instance, in GNU cpio, pax
, cpio
and mt
are
linked against the library libcpio.a. However, rmt
is
built in the same directory, and has no such link requirement. Also,
mt
and rmt
are only built on certain architectures. Here
is what cpio’s src/Makefile.am looks like (abridged):
bin_PROGRAMS = cpio pax @MT@ libexec_PROGRAMS = @RMT@ EXTRA_PROGRAMS = mt rmt LDADD = ../lib/libcpio.a @INTLLIBS@ rmt_LDADD = cpio_SOURCES = … pax_SOURCES = … mt_SOURCES = … rmt_SOURCES = …
‘prog_LDADD’ is inappropriate for passing program-specific linker flags (except for ‘-l’ and ‘-L’). So, use the ‘prog_LDFLAGS’ variable for this purpose.
It is also occasionally useful to have a program depend on some other target which is not actually part of that program. This can be done using the ‘prog_DEPENDENCIES’ variable. Each program depends on the contents of such a variable, but no further interpretation is done.
If ‘prog_DEPENDENCIES’ is not supplied, it is computed by Automake. The automatically-assigned value is the contents of ‘prog_LDADD’, with most configure substitutions, ‘-l’, and ‘-L’ options removed. The configure substitutions that are left in are only ‘@LIBOBJS@’ and ‘@ALLOCA@’; these are left because it is known that they will not cause an invalid value for ‘prog_DEPENDENCIES’ to be generated.
Next: Special handling for LIBOBJS and ALLOCA, Previous: Building a program, Up: Building Programs and Libraries [Contents][Index]
Building a library is much like building a program. In this case, the
name of the primary is ‘LIBRARIES’. Libraries can be installed in
libdir
or pkglibdir
.
See Building a Shared Library, for information on how to build shared libraries using Libtool and the ‘LTLIBRARIES’ primary.
Each ‘_LIBRARIES’ variable is a list of the libraries to be built. For instance to create a library named libcpio.a, but not install it, you would write:
noinst_LIBRARIES = libcpio.a
The sources that go into a library are determined exactly as they are for programs, via the ‘_SOURCES’ variables. Note that the library name is canonicalized (see How derived variables are named), so the ‘_SOURCES’ variable corresponding to liblob.a is ‘liblob_a_SOURCES’, not ‘liblob.a_SOURCES’.
Extra objects can be added to a library using the
‘library_LIBADD’ variable. This should be used for objects
determined by configure
. Again from cpio
:
libcpio_a_LIBADD = @LIBOBJS@ @ALLOCA@
Next: Building a Shared Library, Previous: Building a library, Up: Building Programs and Libraries [Contents][Index]
Automake explicitly recognizes the use of @LIBOBJS@
and
@ALLOCA@
, and uses this information, plus the list of
LIBOBJS
files derived from configure.in to automatically
include the appropriate source files in the distribution (see What Goes in a Distribution).
These source files are also automatically handled in the
dependency-tracking scheme; see See Automatic dependency tracking.
@LIBOBJS@
and @ALLOCA@
are specially recognized in any
‘_LDADD’ or ‘_LIBADD’ variable.
Next: Yacc and Lex support, Previous: Building a Shared Library, Up: Building Programs and Libraries [Contents][Index]
Occasionally it is useful to know which Makefile variables Automake uses for compilations; for instance you might need to do your own compilation in some special cases.
Some variables are inherited from Autoconf; these are CC
,
CFLAGS
, CPPFLAGS
, DEFS
, LDFLAGS
, and
LIBS
.
There are some additional variables which Automake itself defines:
INCLUDES
¶A list of ‘-I’ options. This can be set in your Makefile.am
if you have special directories you want to look in. Automake already
provides some ‘-I’ options automatically. In particular it
generates ‘-I$(srcdir)’ and a ‘-I’ pointing to the directory
holding config.h (if you’ve used AC_CONFIG_HEADER
or
AM_CONFIG_HEADER
).
INCLUDES
can actually be used for other cpp
options
besides ‘-I’. For instance, it is sometimes used to pass arbitrary
‘-D’ options to the compiler.
COMPILE
¶This is the command used to actually compile a C source file. The filename is appended to form the complete command line.
LINK
¶This is the command used to actually link a C program.
Next: C++ Support, Previous: Variables used when building a program, Up: Building Programs and Libraries [Contents][Index]
Automake has somewhat idiosyncratic support for Yacc and Lex.
Automake assumes that the .c file generated by yacc
(or
lex
) should be named using the basename of the input file. That
is, for a yacc source file foo.y, Automake will cause the
intermediate file to be named foo.c (as opposed to
y.tab.c, which is more traditional).
The extension of a yacc source file is used to determine the extension of the resulting ‘C’ or ‘C++’ file. Files with the extension ‘.y’ will be turned into ‘.c’ files; likewise, ‘.yy’ will become ‘.cc’; ‘.y++’, ‘c++’; and ‘.yxx’, ‘.cxx’.
Likewise, lex source files can be used to generate ‘C’ or ‘C++’; the extensions ‘.l’, ‘.ll’, ‘.l++’, and ‘.lxx’ are recognized.
You should never explicitly mention the intermediate (‘C’ or ‘C++’) file in any ‘SOURCES’ variable; only list the source file.
The intermediate files generated by yacc
(or lex
) will be
included in any distribution that is made. That way the user doesn’t
need to have yacc
or lex
.
If a yacc
source file is seen, then your configure.in must
define the variable ‘YACC’. This is most easily done by invoking
the macro ‘AC_PROG_YACC’ (see Particular
Program Checks in The Autoconf Manual).
Similarly, if a lex
source file is seen, then your
configure.in must define the variable ‘LEX’. You can use
‘AC_PROG_LEX’ to do this (see Particular
Program Checks in The Autoconf Manual). Automake’s lex
support also requires that you use the ‘AC_DECL_YYTEXT’
macro—automake needs to know the value of ‘LEX_OUTPUT_ROOT’.
This is all handled for you if you use the AM_PROG_LEX
macro
(see Autoconf macros supplied with Automake).
Automake makes it possible to include multiple yacc
(or
lex
) source files in a single program. Automake uses a small
program called ylwrap
to run yacc
(or lex
) in a
subdirectory. This is necessary because yacc’s output filename is
fixed, and a parallel make could conceivably invoke more than one
instance of yacc
simultaneously. The ylwrap
program is
distributed with Automake. It should appear in the directory specified
by ‘AC_CONFIG_AUX_DIR’ (see Finding ‘configure’ Input in The Autoconf Manual), or the current directory if that macro
is not used in configure.in.
For yacc
, simply managing locking is insufficient. The output of
yacc
always uses the same symbol names internally, so it isn’t
possible to link two yacc
parsers into the same executable.
We recommend using the following renaming hack used in gdb
:
#define yymaxdepth c_maxdepth #define yyparse c_parse #define yylex c_lex #define yyerror c_error #define yylval c_lval #define yychar c_char #define yydebug c_debug #define yypact c_pact #define yyr1 c_r1 #define yyr2 c_r2 #define yydef c_def #define yychk c_chk #define yypgo c_pgo #define yyact c_act #define yyexca c_exca #define yyerrflag c_errflag #define yynerrs c_nerrs #define yyps c_ps #define yypv c_pv #define yys c_s #define yy_yys c_yys #define yystate c_state #define yytmp c_tmp #define yyv c_v #define yy_yyv c_yyv #define yyval c_val #define yylloc c_lloc #define yyreds c_reds #define yytoks c_toks #define yylhs c_yylhs #define yylen c_yylen #define yydefred c_yydefred #define yydgoto c_yydgoto #define yysindex c_yysindex #define yyrindex c_yyrindex #define yygindex c_yygindex #define yytable c_yytable #define yycheck c_yycheck #define yyname c_yyname #define yyrule c_yyrule
For each define, replace the ‘c_’ prefix with whatever you like.
These defines work for bison
, byacc
, and traditional
yacc
s. If you find a parser generator that uses a symbol not
covered here, please report the new name so it can be added to the list.
Next: Fortran 77 Support, Previous: Yacc and Lex support, Up: Building Programs and Libraries [Contents][Index]
Automake includes full support for C++.
Any package including C++ code must define the output variable
‘CXX’ in configure.in; the simplest way to do this is to use
the AC_PROG_CXX
macro (see Particular
Program Checks in The Autoconf Manual).
A few additional variables are defined when a C++ source file is seen:
CXX
¶The name of the C++ compiler.
CXXFLAGS
¶Any flags to pass to the C++ compiler.
CXXCOMPILE
¶The command used to actually compile a C++ source file. The file name is appended to form the complete command line.
CXXLINK
¶The command used to actually link a C++ program.
Next: Support for Other Languages, Previous: C++ Support, Up: Building Programs and Libraries [Contents][Index]
Automake includes full support for Fortran 77.
Any package including Fortran 77 code must define the output variable
‘F77’ in configure.in; the simplest way to do this is to use
the AC_PROG_F77
macro (see Particular
Program Checks in The Autoconf Manual). See Fortran 77 and Autoconf.
A few additional variables are defined when a Fortran 77 source file is seen:
F77
¶The name of the Fortran 77 compiler.
FFLAGS
¶Any flags to pass to the Fortran 77 compiler.
RFLAGS
¶Any flags to pass to the Ratfor compiler.
F77COMPILE
¶The command used to actually compile a Fortran 77 source file. The file name is appended to form the complete command line.
FLINK
¶The command used to actually link a pure Fortran 77 program or shared library.
Automake can handle preprocessing Fortran 77 and Ratfor source files in addition to compiling them1. Automake also contains some support for creating programs and shared libraries that are a mixture of Fortran 77 and other languages (see Mixing Fortran 77 With C and C++).
These issues are covered in the following sections.
Next: Compiling Fortran 77 Files, Previous: Fortran 77 Support, Up: Fortran 77 Support [Contents][Index]
N.f is made automatically from N.F or N.r. This rule runs just the preprocessor to convert a preprocessable Fortran 77 or Ratfor source file into a strict Fortran 77 source file. The precise command used is as follows:
$(F77) -F $(DEFS) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_FFLAGS) $(FFLAGS)
$(F77) -F $(AM_FFLAGS) $(FFLAGS) $(AM_RFLAGS) $(RFLAGS)
Next: Mixing Fortran 77 With C and C++, Previous: Preprocessing Fortran 77, Up: Fortran 77 Support [Contents][Index]
N.o is made automatically from N.f, N.F or N.r by running the Fortran 77 compiler. The precise command used is as follows:
$(F77) -c $(AM_FFLAGS) $(FFLAGS)
$(F77) -c $(DEFS) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_FFLAGS) $(FFLAGS)
$(F77) -c $(AM_FFLAGS) $(FFLAGS) $(AM_RFLAGS) $(RFLAGS)
Next: Fortran 77 and Autoconf, Previous: Compiling Fortran 77 Files, Up: Fortran 77 Support [Contents][Index]
Automake currently provides limited support for creating programs and shared libraries that are a mixture of Fortran 77 and C and/or C++. However, there are many other issues related to mixing Fortran 77 with other languages that are not (currently) handled by Automake, but that are handled by other packages2.
Automake can help in two ways:
These extra Fortran 77 linker flags are supplied in the output variable
FLIBS
by the AC_F77_LIBRARY_LDFLAGS
Autoconf macro
supplied with newer versions of Autoconf (Autoconf version 2.13 and
later). See Fortran 77 Compiler Characteristics in The
Autoconf.
If Automake detects that a program or shared library (as mentioned in
some _PROGRAMS
or _LTLIBRARIES
primary) contains source
code that is a mixture of Fortran 77 and C and/or C++, then it requires
that the macro AC_F77_LIBRARY_LDFLAGS
be called in
configure.in, and that either $(FLIBS)
or @FLIBS@
appear in the appropriate _LDADD
(for programs) or _LIBADD
(for shared libraries) variables. It is the responsibility of the
person writing the Makefile.am to make sure that $(FLIBS)
or @FLIBS@
appears in the appropriate _LDADD
or
_LIBADD
variable.
For example, consider the following Makefile.am:
bin_PROGRAMS = foo foo_SOURCES = main.cc foo.f foo_LDADD = libfoo.la @FLIBS@ pkglib_LTLIBRARIES = libfoo.la libfoo_la_SOURCES = bar.f baz.c zardoz.cc libfoo_la_LIBADD = $(FLIBS)
In this case, Automake will insist that AC_F77_LIBRARY_LDFLAGS
is mentioned in configure.in. Also, if @FLIBS@
hadn’t
been mentioned in foo_LDADD
and libfoo_la_LIBADD
, then
Automake would have issued a warning.
Previous: Mixing Fortran 77 With C and C++, Up: Mixing Fortran 77 With C and C++ [Contents][Index]
The following diagram demonstrates under what conditions a particular linker is chosen by Automake.
For example, if Fortran 77, C and C++ source code were to be compiled
into a program, then the C++ linker will be used. In this case, if the
C or Fortran 77 linkers required any special libraries that weren’t
included by the C++ linker, then they must be manually added to an
_LDADD
or _LIBADD
variable by the user writing the
Makefile.am.
\ Linker source \ code \ C C++ Fortran ----------------- +---------+---------+---------+ | | | | C | x | | | | | | | +---------+---------+---------+ | | | | C++ | | x | | | | | | +---------+---------+---------+ | | | | Fortran | | | x | | | | | +---------+---------+---------+ | | | | C + C++ | | x | | | | | | +---------+---------+---------+ | | | | C + Fortran | | | x | | | | | +---------+---------+---------+ | | | | C++ + Fortran | | x | | | | | | +---------+---------+---------+ | | | | C + C++ + Fortran | | x | | | | | | +---------+---------+---------+
Previous: Mixing Fortran 77 With C and C++, Up: Fortran 77 Support [Contents][Index]
The current Automake support for Fortran 77 requires a recent enough version Autoconf that also includes support for Fortran 77. Full Fortran 77 support was added to Autoconf 2.13, so you will want to use that version of Autoconf or later.
Next: Automatic de-ANSI-fication, Previous: Fortran 77 Support, Up: Building Programs and Libraries [Contents][Index]
Automake currently only includes full support for C, C++ (see C++ Support)and Fortran 77 (see Fortran 77 Support). There is only rudimentary support for other languages, support for which will be improved based on user demand.
Next: Automatic dependency tracking, Previous: Support for Other Languages, Up: Building Programs and Libraries [Contents][Index]
Although the GNU standards allow the use of ANSI C, this can have the effect of limiting portability of a package to some older compilers (notably SunOS).
Automake allows you to work around this problem on such machines by de-ANSI-fying each source file before the actual compilation takes place.
If the Makefile.am variable AUTOMAKE_OPTIONS
(see Changing Automake’s Behavior) contains the option ansi2knr
then code to
handle de-ANSI-fication is inserted into the generated
Makefile.in.
This causes each C source file in the directory to be treated as ANSI C.
If an ANSI C compiler is available, it is used. If no ANSI C compiler
is available, the ansi2knr
program is used to convert the source
files into K&R C, which is then compiled.
The ansi2knr
program is simple-minded. It assumes the source
code will be formatted in a particular way; see the ansi2knr
man
page for details.
Support for de-ANSI-fication requires the source files ansi2knr.c
and ansi2knr.1 to be in the same package as the ANSI C source;
these files are distributed with Automake. Also, the package
configure.in must call the macro AM_C_PROTOTYPES
(see Autoconf macros supplied with Automake).
Automake also handles finding the ansi2knr
support files in some
other directory in the current package. This is done by prepending the
relative path to the appropriate directory to the ansi2knr
option. For instance, suppose the package has ANSI C code in the
src and lib subdirs. The files ansi2knr.c and
ansi2knr.1 appear in lib. Then this could appear in
src/Makefile.am:
AUTOMAKE_OPTIONS = ../lib/ansi2knr
If no directory prefix is given, the files are assumed to be in the current directory.
Files mentioned in LIBOBJS
which need de-ANSI-fication will not
be automatically handled. That’s because configure
will generate
an object name like regex.o, while make
will be looking
for regex_.o (when de-ANSI-fying). Eventually this problem will
be fixed via autoconf
magic, but for now you must put this code
into your configure.in, just before the AC_OUTPUT
call:
# This is necessary so that .o files in LIBOBJS are also built via # the ANSI2KNR-filtering rules. LIBOBJS=`echo $LIBOBJS|sed 's/\.o /\$U.o /g;s/\.o$/\$U.o/'`
Previous: Automatic de-ANSI-fication, Up: Building Programs and Libraries [Contents][Index]
As a developer it is often painful to continually update the Makefile.in whenever the include-file dependencies change in a project. Automake supplies a way to automatically track dependency changes, and distribute the dependencies in the generated Makefile.in.
Currently this support requires the use of GNU make
and
gcc
. It might become possible in the future to supply a
different dependency generating program, if there is enough demand. In
the meantime, this mode is enabled by default if any C program or
library is defined in the current directory, so you may get a ‘Must
be a separator’ error from non-GNU make.
When you decide to make a distribution, the dist
target will
re-run automake
with ‘--include-deps’ and other options.
See Creating a Makefile.in, and Changing Automake’s Behavior. This will cause the
previously generated dependencies to be inserted into the generated
Makefile.in, and thus into the distribution. This step also
turns off inclusion of the dependency generation code, so that those who
download your distribution but don’t use GNU make
and gcc
will not get errors.
When added to the Makefile.in, the dependencies have all system-specific dependencies automatically removed. This can be done by listing the files in ‘OMIT_DEPENDENCIES’. For instance all references to system header files are removed by Automake. Sometimes it is useful to specify that a certain header file should be removed. For instance if your configure.in uses ‘AM_WITH_REGEX’, then any dependency on rx.h or regex.h should be removed, because the correct one cannot be known until the user configures the package.
As it turns out, Automake is actually smart enough to handle the particular case of the regular expression header. It will also automatically omit libintl.h if ‘AM_GNU_GETTEXT’ is used.
Automatic dependency tracking can be suppressed by putting
no-dependencies
in the variable AUTOMAKE_OPTIONS
.
If you unpack a distribution made by make dist
, and you want to
turn on the dependency-tracking code again, simply re-run
automake
.
The actual dependency files are put under the build directory, in a subdirectory named .deps. These dependencies are machine specific. It is safe to delete them if you like; they will be automatically recreated during the next build.
Next: Other GNU Tools, Previous: Building Programs and Libraries, Up: GNU Automake [Contents][Index]
Automake can handle derived objects which are not C programs. Sometimes the support for actually building such objects must be explicitly supplied, but Automake will still automatically handle installation and distribution.
Next: Header files, Previous: Other Derived Objects, Up: Other Derived Objects [Contents][Index]
It is possible to define and install programs which are scripts. Such programs are listed using the ‘SCRIPTS’ primary name. Automake doesn’t define any dependencies for scripts; the Makefile.am should include the appropriate rules.
Automake does not assume that scripts are derived objects; such objects must be deleted by hand (see What Gets Cleaned).
The automake
program itself is a Perl script that is generated at
configure time from automake.in. Here is how this is handled:
bin_SCRIPTS = automake
Since automake
appears in the AC_OUTPUT
macro, a target
for it is automatically generated.
Script objects can be installed in bindir
, sbindir
,
libexecdir
, or pkgdatadir
.
Next: Architecture-independent data files, Previous: Executable Scripts, Up: Other Derived Objects [Contents][Index]
Header files are specified by the ‘HEADERS’ family of variables.
Generally header files are not installed, so the noinst_HEADERS
variable will be the most used.
All header files must be listed somewhere; missing ones will not appear in the distribution. Often it is clearest to list uninstalled headers with the rest of the sources for a program. See Building a program. Headers listed in a ‘_SOURCES’ variable need not be listed in any ‘_HEADERS’ variable.
Headers can be installed in includedir
, oldincludedir
, or
pkgincludedir
.
Next: Built sources, Previous: Header files, Up: Other Derived Objects [Contents][Index]
Automake supports the installation of miscellaneous data files using the ‘DATA’ family of variables.
Such data can be installed in the directories datadir
,
sysconfdir
, sharedstatedir
, localstatedir
, or
pkgdatadir
.
By default, data files are not included in a distribution.
Here is how Automake installs its auxiliary data files:
pkgdata_DATA = clean-kr.am clean.am …
Previous: Architecture-independent data files, Up: Other Derived Objects [Contents][Index]
Occasionally a file which would otherwise be called ‘source’
(e.g. a C ‘.h’ file) is actually derived from some other file.
Such files should be listed in the BUILT_SOURCES
variable.
Built sources are also not compiled by default. You must explicitly mention them in some other ‘_SOURCES’ variable for this to happen.
Note that, in some cases, BUILT_SOURCES
will work in somewhat
surprising ways. In order to get the built sources to work with
automatic dependency tracking, the Makefile must depend on
$(BUILT_SOURCES)
. This can cause these sources to be rebuilt at
what might seem like funny times.
Next: Building documentation, Previous: Other Derived Objects, Up: GNU Automake [Contents][Index]
Since Automake is primarily intended to generate Makefile.ins for use in GNU programs, it tries hard to interoperate with other GNU tools.
Next: Gettext, Previous: Other GNU Tools, Up: Other GNU Tools [Contents][Index]
Automake provides some support for Emacs Lisp. The ‘LISP’ primary
is used to hold a list of .el files. Possible prefixes for this
primary are ‘lisp_’ and ‘noinst_’. Note that if
lisp_LISP
is defined, then configure.in must run
AM_PATH_LISPDIR
(see Autoconf macros supplied with Automake).
By default Automake will byte-compile all Emacs Lisp source files using
the Emacs found by AM_PATH_LISPDIR
. If you wish to avoid
byte-compiling, simply define the variable ELCFILES
to be empty.
Byte-compiled Emacs Lisp files are not portable among all versions of
Emacs, so it makes sense to turn this off if you expect sites to have
more than one version of Emacs installed. Furthermore, many packages
don’t actually benefit from byte-compilation. Still, we recommend that
you leave it enabled by default. It is probably better for sites with
strange setups to cope for themselves than to make the installation less
nice for everybody else.
Next: Guile, Previous: Emacs Lisp, Up: Other GNU Tools [Contents][Index]
If AM_GNU_GETTEXT
is seen in configure.in, then Automake
turns on support for GNU gettext, a message catalog system for
internationalization
(see GNU Gettext in GNU gettext utilities).
The gettext
support in Automake requires the addition of two
subdirectories to the package, intl and po. Automake
insures that these directories exist and are mentioned in
SUBDIRS
.
Furthermore, Automake checks that the definition of ALL_LINGUAS
in configure.in corresponds to all the valid .po files,
and nothing more.
Next: Libtool, Previous: Gettext, Up: Other GNU Tools [Contents][Index]
Automake provides some automatic support for writing Guile modules.
Automake will turn on Guile support if the AM_INIT_GUILE_MODULE
macro is used in configure.in.
Right now Guile support just means that the AM_INIT_GUILE_MODULE
macro is understood to mean:
AM_INIT_AUTOMAKE
is run.
AC_CONFIG_AUX_DIR
is run, with a path of ...
As the Guile module code matures, no doubt the Automake support will grow as well.
Next: Java, Previous: Guile, Up: Other GNU Tools [Contents][Index]
Automake provides support for GNU Libtool (see Introduction in The Libtool Manual) with the ‘LTLIBRARIES’ primary. See Building a Shared Library.
Previous: Libtool, Up: Other GNU Tools [Contents][Index]
Automake provides some minimal support for Java compilation with the ‘JAVA’ primary.
Any .java files listed in a ‘_JAVA’ variable will be
compiled with JAVAC
at build time. By default, .class
files are not included in the distribution.
Currently Automake enforces the restriction that only one ‘_JAVA’ primary can be used in a given Makefile.am. The reason for this restriction is that, in general, it isn’t possible to know which .class files were generated from which .java files – so it would be impossible to know which files to install where.
Next: What Gets Installed, Previous: Other GNU Tools, Up: GNU Automake [Contents][Index]
Currently Automake provides support for Texinfo and man pages.
Next: Man pages, Previous: Building documentation, Up: Building documentation [Contents][Index]
If the current directory contains Texinfo source, you must declare it
with the ‘TEXINFOS’ primary. Generally Texinfo files are converted
into info, and thus the info_TEXINFOS
macro is most commonly used
here. Note that any Texinfo source file must end in the .texi or
.texinfo extension.
If the .texi file @include
s version.texi, then
that file will be automatically generated. The file version.texi
defines three Texinfo macros you can reference: EDITION
,
VERSION
, and UPDATED
. The first two hold the version
number of your package (but are kept separate for clarity); the last is
the date the primary file was last modified. The version.texi
support requires the mdate-sh
program; this program is supplied
with Automake and automatically included when automake
is invoked
with the --add-missing
option.
Sometimes an info file actually depends on more than one .texi
file. For instance, in GNU Hello, hello.texi includes the file
gpl.texi. You can tell Automake about these dependencies using
the texi_TEXINFOS
variable. Here is how GNU Hello does it:
info_TEXINFOS = hello.texi hello_TEXINFOS = gpl.texi
By default, Automake requires the file texinfo.tex to appear in
the same directory as the Texinfo source. However, if you used
AC_CONFIG_AUX_DIR
in configure.in (see Finding
‘configure’ Input in The Autoconf Manual), then
texinfo.tex is looked for there. Automake supplies
texinfo.tex if ‘--add-missing’ is given.
If your package has Texinfo files in many directories, you can use the
variable TEXINFO_TEX
to tell Automake where to find the canonical
texinfo.tex for your package. The value of this variable should
be the relative path from the current Makefile.am to
texinfo.tex:
TEXINFO_TEX = ../doc/texinfo.tex
The option ‘no-texinfo.tex’ can be used to eliminate the
requirement for texinfo.tex. Use of the variable
TEXINFO_TEX
is preferable, however, because that allows the
dvi
target to still work.
Automake generates an install-info
target; some people apparently
use this. By default, info pages are installed by ‘make install’.
This can be prevented via the no-installinfo
option.
Previous: Texinfo, Up: Building documentation [Contents][Index]
A package can also include man pages (but see the GNU standards on this
matter, Man Pages in The GNU Coding Standards.) Man
pages are declared using the ‘MANS’ primary. Generally the
man_MANS
macro is used. Man pages are automatically installed in
the correct subdirectory of mandir
, based on the file extension.
They are not automatically included in the distribution.
By default, man pages are installed by ‘make install’. However,
since the GNU project does not require man pages, many maintainers do
not expend effort to keep the man pages up to date. In these cases, the
no-installman
option will prevent the man pages from being
installed by default. The user can still explicitly install them via
‘make install-man’.
Here is how the documentation is handled in GNU cpio
(which
includes both Texinfo documentation and man pages):
info_TEXINFOS = cpio.texi man_MANS = cpio.1 mt.1 EXTRA_DIST = $(man_MANS)
Texinfo source and info pages are all considered to be source for the purposes of making a distribution.
Man pages are not currently considered to be source, because it is not uncommon for man pages to be automatically generated. For the same reason, they are not automatically included in the distribution.
Next: What Gets Cleaned, Previous: Building documentation, Up: GNU Automake [Contents][Index]
Naturally, Automake handles the details of actually installing your
program once it has been built. All PROGRAMS
, SCRIPTS
,
LIBRARIES
, LISP
, DATA
and HEADERS
are
automatically installed in the appropriate places.
Automake also handles installing any specified info and man pages.
Automake generates separate install-data
and install-exec
targets, in case the installer is installing on multiple machines which
share directory structure—these targets allow the machine-independent
parts to be installed only once. The install
target depends on
both of these targets.
Automake also generates an uninstall
target, an
installdirs
target, and an install-strip
target.
It is possible to extend this mechanism by defining an
install-exec-local
or install-data-local
target. If these
targets exist, they will be run at ‘make install’ time.
Variables using the standard directory prefixes ‘data’, ‘info’, ‘man’, ‘include’, ‘oldinclude’, ‘pkgdata’, or ‘pkginclude’ (e.g. ‘data_DATA’) are installed by ‘install-data’.
Variables using the standard directory prefixes ‘bin’, ‘sbin’, ‘libexec’, ‘sysconf’, ‘localstate’, ‘lib’, or ‘pkglib’ (e.g. ‘bin_PROGRAMS’) are installed by ‘install-exec’.
Any variable using a user-defined directory prefix with ‘exec’ in the name (e.g. ‘myexecbin_PROGRAMS’ is installed by ‘install-exec’. All other user-defined prefixes are installed by ‘install-data’.
Automake generates support for the ‘DESTDIR’ variable in all install rules. ‘DESTDIR’ is used during the ‘make install’ step to relocate install objects into a staging area. Each object and path is prefixed with the value of ‘DESTDIR’ before being copied into the install area. Here is an example of typical DESTDIR usage:
make DESTDIR=/tmp/staging install
This places install objects in a directory tree built under /tmp/staging. If /gnu/bin/foo and /gnu/share/aclocal/foo.m4 are to be installed, the above command would install /tmp/staging/gnu/bin/foo and /tmp/staging/gnu/share/aclocal/foo.m4.
This feature is commonly used to build install images and packages. For more information, see Makefile Conventions in The GNU Coding Standards.
Next: What Goes in a Distribution, Previous: What Gets Installed, Up: GNU Automake [Contents][Index]
The GNU Makefile Standards specify a number of different clean rules.
Generally the files that can be cleaned are determined automatically by
Automake. Of course, Automake also recognizes some variables that can
be defined to specify additional files to clean. These variables are
MOSTLYCLEANFILES
, CLEANFILES
, DISTCLEANFILES
, and
MAINTAINERCLEANFILES
.
Next: Support for test suites, Previous: What Gets Cleaned, Up: GNU Automake [Contents][Index]
The dist
target in the generated Makefile.in can be used
to generate a gzip’d tar
file for distribution. The tar file is
named based on the ‘PACKAGE’ and ‘VERSION’ variables; more
precisely it is named ‘package-version.tar.gz’.
You can use the make
variable ‘GZIP_ENV’ to control how gzip
is run. The default setting is ‘--best’.
For the most part, the files to distribute are automatically found by
Automake: all source files are automatically included in a distribution,
as are all Makefile.ams and Makefile.ins. Automake also
has a built-in list of commonly used files which, if present in the
current directory, are automatically included. This list is printed by
‘automake --help’. Also, files which are read by configure
(i.e. the source files corresponding to the files specified in the
AC_OUTPUT
invocation) are automatically distributed.
Still, sometimes there are files which must be distributed, but which
are not covered in the automatic rules. These files should be listed in
the EXTRA_DIST
variable. You can mention files from
subdirectories in EXTRA_DIST
. You can also mention a directory
there; in this case the entire directory will be recursively copied into
the distribution.
If you define SUBDIRS
, Automake will recursively include the
subdirectories in the distribution. If SUBDIRS
is defined
conditionally (see Conditionals), Automake will normally include all
directories that could possibly appear in SUBDIRS
in the
distribution. If you need to specify the set of directories
conditionally, you can set the variable DIST_SUBDIRS
to the exact
list of subdirectories to include in the distribution.
Occasionally it is useful to be able to change the distribution before
it is packaged up. If the dist-hook
target exists, it is run
after the distribution directory is filled, but before the actual tar
(or shar) file is created. One way to use this is for distributing
files in subdirectories for which a new Makefile.am is overkill:
dist-hook: mkdir $(distdir)/random cp -p $(srcdir)/random/a1 $(srcdir)/random/a2 $(distdir)/random
Automake also generates a distcheck
target which can be help to
ensure that a given distribution will actually work. distcheck
makes a distribution, and then tries to do a VPATH
build.
Next: Changing Automake’s Behavior, Previous: What Goes in a Distribution, Up: GNU Automake [Contents][Index]
Automake supports two forms of test suites.
If the variable TESTS
is defined, its value is taken to be a list
of programs to run in order to do the testing. The programs can either
be derived objects or source objects; the generated rule will look both
in srcdir
and .. Programs needing data files should look
for them in srcdir
(which is both an environment variable and a
make variable) so they work when building in a separate directory
(see Build Directories in The Autoconf
Manual), and in particular for the distcheck
target
(see What Goes in a Distribution).
The number of failures will be printed at the end of the run. If a given test program exits with a status of 77, then its result is ignored in the final count. This feature allows non-portable tests to be ignored in environments where they don’t make sense.
The variable TESTS_ENVIRONMENT
can be used to set environment
variables for the test run; the environment variable srcdir
is
set in the rule. If all your test programs are scripts, you can also
set TESTS_ENVIRONMENT
to an invocation of the shell (e.g.
‘$(SHELL) -x’); this can be useful for debugging the tests.
If ‘dejagnu’ appears in AUTOMAKE_OPTIONS
, then a
dejagnu
-based test suite is assumed. The value of the variable
DEJATOOL
is passed as the --tool
argument to
runtest
; it defaults to the name of the package.
The variable RUNTESTDEFAULTFLAGS
holds the --tool
and
--srcdir
flags that are passed to dejagnu by default; this can be
overridden if necessary.
The variables EXPECT
, RUNTEST
and RUNTESTFLAGS
can
also be overridden to provide project-specific values. For instance,
you will need to do this if you are testing a compiler toolchain,
because the default values do not take into account host and target
names.
In either case, the testing is done via ‘make check’.
Next: Miscellaneous Rules, Previous: Support for test suites, Up: GNU Automake [Contents][Index]
Various features of Automake can be controlled by options in the
Makefile.am. Such options are listed in a special variable named
AUTOMAKE_OPTIONS
. Currently understood options are:
gnits
gnu
foreign
cygnus
¶Set the strictness as appropriate. The gnits
option also implies
readme-alpha
and check-news
.
ansi2knr
¶path/ansi2knr
Turn on automatic de-ANSI-fication. See Automatic de-ANSI-fication. If preceded by a path, the generated Makefile.in will look in the specified directory to find the ansi2knr program. Generally the path should be a relative path to another directory in the same distribution (though Automake currently does not check this).
check-news
¶Cause make dist
to fail unless the current version number appears
in the first few lines of the NEWS file.
dejagnu
¶Cause dejagnu
-specific rules to be generated. See Support for test suites.
dist-shar
¶Generate a dist-shar
target as well as the ordinary dist
target. This new target will create a shar archive of the
distribution.
dist-zip
¶Generate a dist-zip
target as well as the ordinary dist
target. This new target will create a zip archive of the distribution.
dist-tarZ
¶Generate a dist-tarZ
target as well as the ordinary dist
target. This new target will create a compressed tar archive of the
distribution; a traditional tar
and compress
will be
assumed. Warning: if you are actually using GNU tar
, then the
generated archive might contain nonportable constructs.
no-dependencies
¶This is similar to using ‘--include-deps’ on the command line, but is useful for those situations where you don’t have the necessary bits to make automatic dependency tracking work See Automatic dependency tracking. In this case the effect is to effectively disable automatic dependency tracking.
no-installinfo
¶The generated Makefile.in will not cause info pages to be built
or installed by default. However, info
and install-info
targets will still be available. This option is disallowed at
‘GNU’ strictness and above.
no-installman
¶The generated Makefile.in will not cause man pages to be
installed by default. However, an install-man
target will still
be available for optional installation. This option is disallowed at
‘GNU’ strictness and above.
no-texinfo.tex
¶Don’t require texinfo.tex, even if there are texinfo files in this directory.
readme-alpha
¶If this release is an alpha release, and the file README-alpha exists, then it will be added to the distribution. If this option is given, version numbers are expected to follow one of two forms. The first form is ‘MAJOR.MINOR.ALPHA’, where each element is a number; the final period and number should be left off for non-alpha releases. The second form is ‘MAJOR.MINORALPHA’, where ALPHA is a letter; it should be omitted for non-alpha releases.
A version number (e.g. ‘0.30’) can be specified. If Automake is not newer than the version specified, creation of the Makefile.in will be suppressed.
Unrecognized options are diagnosed by automake
.
Next: Include, Previous: Changing Automake’s Behavior, Up: GNU Automake [Contents][Index]
There are a few rules and variables that didn’t fit anywhere else.
Next: Handling new file extensions, Previous: Miscellaneous Rules, Up: Miscellaneous Rules [Contents][Index]
etags
Automake will generate rules to generate TAGS files for use with GNU Emacs under some circumstances.
If any C, C++ or Fortran 77 source code or headers are present, then
tags
and TAGS
targets will be generated for the directory.
At the topmost directory of a multi-directory package, a tags
target file will be generated which, when run, will generate a
TAGS file that includes by reference all TAGS files from
subdirectories.
Also, if the variable ETAGS_ARGS
is defined, a tags
target
will be generated. This variable is intended for use in directories
which contain taggable source that etags
does not understand.
Here is how Automake generates tags for its source, and for nodes in its Texinfo file:
ETAGS_ARGS = automake.in --lang=none \ --regex='/^@node[ \t]+\([^,]+\)/\1/' automake.texi
If you add filenames to ‘ETAGS_ARGS’, you will probably also
want to set ‘TAGS_DEPENDENCIES’. The contents of this variable
are added directly to the dependencies for the tags
target.
Automake will also generate an ID
target which will run
mkid
on the source. This is only supported on a
directory-by-directory basis.
Previous: Interfacing to etags
, Up: Miscellaneous Rules [Contents][Index]
It is sometimes useful to introduce a new implicit rule to handle a file
type that Automake does not know about. If this is done, you must
notify GNU Make of the new suffixes. This can be done by putting a list
of new suffixes in the SUFFIXES
variable.
For instance, currently Automake does not provide any Java support. If you wrote a macro to generate ‘.class’ files from ‘.java’ source files, you would also need to add these suffixes to the list:
SUFFIXES = .java .class
Next: Conditionals, Previous: Miscellaneous Rules, Up: GNU Automake [Contents][Index]
To include another file (perhaps for common rules), the following syntax is supported:
include ($(srcdir)|$(top_srcdir))/filename
Using files in the current directory:
include $(srcdir)/Makefile.extra
include Makefile.generated
Using a file in the top level directory:
include $(top_srcdir)/filename
Next: The effect of --gnu
and --gnits
, Previous: Include, Up: GNU Automake [Contents][Index]
Automake supports a simple type of conditionals.
Before using a conditional, you must define it by using
AM_CONDITIONAL
in the configure.in
file (see Autoconf macros supplied with Automake).
The AM_CONDITIONAL
macro takes two arguments.
The first argument to AM_CONDITIONAL
is the name of the
conditional. This should be a simple string starting with a letter and
containing only letters, digits, and underscores.
The second argument to AM_CONDITIONAL
is a shell condition,
suitable for use in a shell if
statement. The condition is
evaluated when configure
is run.
Conditionals typically depend upon options which the user provides to
the configure
script. Here is an example of how to write a
conditional which is true if the user uses the ‘--enable-debug’
option.
AC_ARG_ENABLE(debug, [ --enable-debug Turn on debugging], [case "${enableval}" in yes) debug=true ;; no) debug=false ;; *) AC_MSG_ERROR(bad value ${enableval} for --enable-debug) ;; esac],[debug=false]) AM_CONDITIONAL(DEBUG, test x$debug = xtrue)
Here is an example of how to use that conditional in Makefile.am:
if DEBUG DBG = debug else DBG = endif noinst_PROGRAMS = $(DBG)
This trivial example could also be handled using EXTRA_PROGRAMS (see Building a program).
You may only test a single variable in an if
statement. The
else
statement may be omitted. Conditionals may be nested to any
depth.
Note that conditionals in Automake are not the same as conditionals in
GNU Make. Automake conditionals are checked at configure time by the
configure script, and affect the translation from
Makefile.in to Makefile. They are based on options passed
to configure and on results that configure has discovered
about the host system. GNU Make conditionals are checked at make
time, and are based on variables passed to the make program or defined
in the Makefile.
Automake conditionals will work with any make program.
Next: The effect of --cygnus
, Previous: Conditionals, Up: GNU Automake [Contents][Index]
--gnu
and --gnits
The ‘--gnu’ option (or ‘gnu’ in the ‘AUTOMAKE_OPTIONS’
variable) causes automake
to check the following:
Note that this option will be extended in the future to do even more
checking; it is advisable to be familiar with the precise requirements
of the GNU standards. Also, ‘--gnu’ can require certain
non-standard GNU programs to exist for use by various maintainer-only
targets; for instance in the future pathchk
might be required for
‘make dist’.
The ‘--gnits’ option does everything that ‘--gnu’ does, and checks the following as well:
Next: When Automake Isn’t Enough, Previous: The effect of --gnu
and --gnits
, Up: GNU Automake [Contents][Index]
--cygnus
Cygnus Solutions has slightly different rules for how a
Makefile.in is to be constructed. Passing ‘--cygnus’ to
automake
will cause any generated Makefile.in to comply
with Cygnus rules.
Here are the precise effects of ‘--cygnus’:
runtest
, expect
,
makeinfo
and texi2dvi
.
--foreign
is implied.
check
target doesn’t depend on all
.
GNU maintainers are advised to use ‘gnu’ strictness in preference to the special Cygnus mode.
Next: Distributing Makefile.ins, Previous: The effect of --cygnus
, Up: GNU Automake [Contents][Index]
Automake’s implicit copying semantics means that many problems can be
worked around by simply adding some make
targets and rules to
Makefile.in. Automake will ignore these additions.
There are some caveats to doing this. Although you can overload a target already used by Automake, it is often inadvisable, particularly in the topmost directory of a non-flat package. However, various useful targets have a ‘-local’ version you can specify in your Makefile.in. Automake will supplement the standard target with these user-supplied targets.
The targets that support a local version are all
, info
,
dvi
, check
, install-data
, install-exec
,
uninstall
, and the various clean
targets
(mostlyclean
, clean
, distclean
, and
maintainer-clean
). Note that there are no
uninstall-exec-local
or uninstall-data-local
targets; just
use uninstall-local
. It doesn’t make sense to uninstall just
data or just executables.
For instance, here is one way to install a file in /etc:
install-data-local: $(INSTALL_DATA) $(srcdir)/afile /etc/afile
Some targets also have a way to run another target, called a hook,
after their work is done. The hook is named after the principal target,
with ‘-hook’ appended. The targets allowing hooks are
install-data
, install-exec
, dist
, and
distcheck
.
For instance, here is how to create a hard link to an installed program:
install-exec-hook: ln $(bindir)/program $(bindir)/proglink
Next: Some ideas for the future, Previous: When Automake Isn’t Enough, Up: GNU Automake [Contents][Index]
Automake places no restrictions on the distribution of the resulting Makefile.ins. We still encourage software authors to distribute their work under terms like those of the GPL, but doing so is not required to use Automake.
Some of the files that can be automatically installed via the
--add-missing
switch do fall under the GPL; examine each file
to see.
Next: Macro and Variable Index, Previous: Distributing Makefile.ins, Up: GNU Automake [Contents][Index]
Here are some things that might happen in the future:
Next: General Index, Previous: Some ideas for the future, Up: GNU Automake [Contents][Index]
Jump to: | _
A B C D E F H I L M N O P R S T V W Y |
---|
Jump to: | _
A B C D E F H I L M N O P R S T V W Y |
---|
Previous: Macro and Variable Index, Up: GNU Automake [Contents][Index]
Jump to: | #
-
@
_
A B C D E F G H I J L M N O P R S T U V Y Z |
---|
Jump to: | #
-
@
_
A B C D E F G H I J L M N O P R S T U V Y Z |
---|
Much, if not most, of the information in the following sections pertaining to preprocessing Fortran 77 programs was taken almost verbatim from Catalogue of Rules in The GNU Make Manual.
For example,
the cfortran package
addresses all of these inter-language issues, and runs under nearly all
Fortran 77, C and C++ compilers on nearly all platforms. However,
cfortran
is not yet Free Software, but it will be in the next
major release.